2.7 ROC曲线相比P-R曲线有什么特点?

2.7 ROC曲线相比P-R曲线有什么特点?

前情提要:

P-R曲线详见:2.2 什么是精确率(Precision)与召回率(Recall)?二者如何权衡?

2.4 ROC曲线是什么?

2.5 如何绘制ROC曲线?

2.6 如何计算AUC?

P-R曲线和ROC曲线同样被经常用来评估分类和排序模型。

相比P-R曲线,ROC曲线有一个特点,当正负样本的分布发生变化时,

  • ROC曲线的形状能够基本保持不变

  • 而P-R 曲线的形状一般会发生较剧烈的变化。

举例来说,图2.3是ROC曲线和P-R曲线的对比图,

  • 其中图2.3(a)和图2.3( c )是ROC曲线,
  • 图2.3(b)和图2.3(d)是P-R 曲线,
  • 图2.3( c )和图2.3(d)则是将测试集中的负样本数量增加10倍后的曲线图。

​ 可以看出,P-R曲线发生了明显的变化,而ROC曲线形状基本不变。这个特点让ROC 曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能

这有什么实际意义呢?

​ 在很多实际问题中,正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000甚至1/10000。若选择不同的测试集,P-R 曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC 曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。

​ 但需要注意的是,选择P-R 曲线还是ROC 曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R 曲线则能够更直观地反映其性能。

参考文献:

《百面机器学习》 诸葛越主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-48736-0

2022年8月第1版(2022年1月北京第19次印刷)

相关推荐
WBluuue4 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3355 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
一车小面包5 小时前
机器学习--决策树
决策树·机器学习
小艳加油6 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
Silence zero7 小时前
day43_2025-08-17
人工智能·深度学习·机器学习
学行库小秘7 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Coovally AI模型快速验证8 小时前
SOD-YOLO:基于YOLO的无人机图像小目标检测增强方法
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
音视频牛哥9 小时前
从「行走」到「思考」:机器人进化之路与感知—决策链路的工程化实践
机器学习·机器人·音视频开发
数据智能老司机12 小时前
面向企业的图学习扩展——面向图的传统机器学习
算法·机器学习
星期天要睡觉13 小时前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵