2.7 ROC曲线相比P-R曲线有什么特点?

2.7 ROC曲线相比P-R曲线有什么特点?

前情提要:

P-R曲线详见:2.2 什么是精确率(Precision)与召回率(Recall)?二者如何权衡?

2.4 ROC曲线是什么?

2.5 如何绘制ROC曲线?

2.6 如何计算AUC?

P-R曲线和ROC曲线同样被经常用来评估分类和排序模型。

相比P-R曲线,ROC曲线有一个特点,当正负样本的分布发生变化时,

  • ROC曲线的形状能够基本保持不变

  • 而P-R 曲线的形状一般会发生较剧烈的变化。

举例来说,图2.3是ROC曲线和P-R曲线的对比图,

  • 其中图2.3(a)和图2.3( c )是ROC曲线,
  • 图2.3(b)和图2.3(d)是P-R 曲线,
  • 图2.3( c )和图2.3(d)则是将测试集中的负样本数量增加10倍后的曲线图。

​ 可以看出,P-R曲线发生了明显的变化,而ROC曲线形状基本不变。这个特点让ROC 曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能

这有什么实际意义呢?

​ 在很多实际问题中,正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000甚至1/10000。若选择不同的测试集,P-R 曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC 曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。

​ 但需要注意的是,选择P-R 曲线还是ROC 曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R 曲线则能够更直观地反映其性能。

参考文献:

《百面机器学习》 诸葛越主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-48736-0

2022年8月第1版(2022年1月北京第19次印刷)

相关推荐
韩曙亮7 分钟前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
vvoennvv2 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
玦尘、3 小时前
《统计学习方法》第4章——朴素贝叶斯法【学习笔记】
笔记·机器学习
网安INF3 小时前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归
程序猿追3 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
陈天伟教授4 小时前
机器学习方法(4)强化学习(试错学习)
人工智能·学习·机器学习
大千AI助手6 小时前
ROUGE-SU4:文本摘要评估的跳连智慧
人工智能·机器学习·nlp·rouge·文本摘要·大千ai助手·rouge-su4
春日见10 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
y***866916 小时前
C机器学习.NET生态库应用
人工智能·机器学习
ChoSeitaku16 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵