2.7 ROC曲线相比P-R曲线有什么特点?

2.7 ROC曲线相比P-R曲线有什么特点?

前情提要:

P-R曲线详见:2.2 什么是精确率(Precision)与召回率(Recall)?二者如何权衡?

2.4 ROC曲线是什么?

2.5 如何绘制ROC曲线?

2.6 如何计算AUC?

P-R曲线和ROC曲线同样被经常用来评估分类和排序模型。

相比P-R曲线,ROC曲线有一个特点,当正负样本的分布发生变化时,

  • ROC曲线的形状能够基本保持不变

  • 而P-R 曲线的形状一般会发生较剧烈的变化。

举例来说,图2.3是ROC曲线和P-R曲线的对比图,

  • 其中图2.3(a)和图2.3( c )是ROC曲线,
  • 图2.3(b)和图2.3(d)是P-R 曲线,
  • 图2.3( c )和图2.3(d)则是将测试集中的负样本数量增加10倍后的曲线图。

​ 可以看出,P-R曲线发生了明显的变化,而ROC曲线形状基本不变。这个特点让ROC 曲线能够尽量降低不同测试集带来的干扰,更加客观地衡量模型本身的性能

这有什么实际意义呢?

​ 在很多实际问题中,正负样本数量往往很不均衡。比如,计算广告领域经常涉及转化率模型,正样本的数量往往是负样本数量的1/1000甚至1/10000。若选择不同的测试集,P-R 曲线的变化就会非常大,而ROC曲线则能够更加稳定地反映模型本身的好坏。所以,ROC 曲线的适用场景更多,被广泛用于排序、推荐、广告等领域。

​ 但需要注意的是,选择P-R 曲线还是ROC 曲线是因实际问题而异的,如果研究者希望更多地看到模型在特定数据集上的表现,P-R 曲线则能够更直观地反映其性能。

参考文献:

《百面机器学习》 诸葛越主编

出版社:人民邮电出版社(北京)

ISBN:978-7-115-48736-0

2022年8月第1版(2022年1月北京第19次印刷)

相关推荐
啊阿狸不会拉杆15 小时前
《计算机视觉:模型、学习和推理》第 6 章-视觉学习和推理
人工智能·学习·算法·机器学习·计算机视觉·生成模型·判别模型
狮子座明仔15 小时前
当RAG的“压缩包“爆了:如何检测Token溢出?
人工智能·机器学习·语言模型·自然语言处理
shenxianasi16 小时前
2026年美赛C题思路分享及数学推导
人工智能·机器学习·数学建模
龙山云仓1 天前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
sensen_kiss1 天前
INT303 Coursework2 贷款批准预测模型(对整个大数据知识的应用)
大数据·机器学习·数据分析
DeepModel1 天前
第15章 多模态学习
深度学习·学习·机器学习
绒绒毛毛雨1 天前
多目标强化学习-英伟达:GDPO
人工智能·深度学习·机器学习
liliangcsdn1 天前
V-trace的核心公式与计算过程
人工智能·机器学习
陈天伟教授1 天前
人工智能应用- 人工智能交叉:05. 从 AlphaFold1 到 AlphaFold2
人工智能·神经网络·算法·机器学习·推荐算法
Eloudy1 天前
直接法 读书笔记 05 第5章 正交方法
人工智能·算法·机器学习