ARM day3

思维导图:

编程实现3个LED灯亮灭

bash 复制代码
.text 
.global _start	@声明全局变量
_start: 		@汇编程序入口
	@使能GPIOE的外设时钟  RCC_MP_AHB4ENSETR的第[4]设置为1即可使能GPIOE时钟
	LDR R0,=0X50000A28   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	ORR R1,R1,#(0x1<<4)   @将第4位设置为1
	STR R1,[R0]  @将修改后的数值写回
	@使能GPIOE的外设时钟  RCC_MP_AHB4ENSETR的第[5]设置为1即可使能GPIOF时钟
	LDR R0,=0X50000A28   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	ORR R1,R1,#(0x1<<5)   @将第5位设置为1
	STR R1,[R0]  @将修改后的数值写回
 
	@设置PE10,PE8为输出  将GPIOE_MODER[21:20]设置为01,就能够让PE10为输出工作模式
	LDR R0,=0X50006000   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x3<<20)   @将第21:20清0
	BIC R1,R1,#(0x3<<16)    @将第17:16清0  
	ORR R1,R1,#(0x1<<20)   @将第21:20设置为01
	ORR R1,R1,#(0x1<<16)   @将第17:16设置为01
	STR R1,[R0]  @将修改后的数值写回
	@设置PF10为输出  将GPIOE_MODER[21:20]设置为01,就能够让PE10为输出工作模式
	LDR R0,=0X50007000   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x3<<20)   @将第21:20清0
	ORR R1,R1,#(0x1<<20)   @将第21:20设置为01
	STR R1,[R0]  @将修改后的数值写回
 
	@设置PE10,PE8为推完输出  将GPIOE_OTYPER寄存器[10]设置为0,就能够让PE10以推挽输出模式进行工作
	LDR R0,=0X50006004   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x1<<10)   @将第10清0
	BIC R1,R1,#(0x1<<8)   @将第8清0
	STR R1,[R0]  @将修改后的数值写回
	@设置PF10为推完输出  将GPIOE_OTYPER寄存器[10]设置为0,就能够让PE10以推挽输出模式进行工作
	LDR R0,=0X50007004   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x1<<10)   @将第10清0
	STR R1,[R0]  @将修改后的数值写回
 
	@设置PE10,PE8为低速输出
	LDR R0,=0X50006008   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x3<<20)   @将第21:20清0
	BIC R1,R1,#(0x3<<16)   @将第17:16清0
	STR R1,[R0]  @将修改后的数值写回
	@设置PF10为低速输出
	LDR R0,=0X50007008   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x3<<20)   @将第21:20清0
	STR R1,[R0]  @将修改后的数值写回
 
	@设置无上拉下拉电阻 
	LDR R0,=0X5000600C   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x3<<20)   @将第21:20清0
	BIC R1,R1,#(0x3<<16)   @将第17:16清0
	STR R1,[R0]  @将修改后的数值写回
	@设置无上拉下拉电阻 
	LDR R0,=0X5000700C   @指定寄存器地址
	LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
	BIC R1,R1,#(0x3<<20)   @将第21:20清0
	STR R1,[R0]  @将修改后的数值写回
 
loop:
    BL LED1_ON		@设置LED1亮
    BL LED2_OFF
    BL LED3_OFF
    BL DELAY
	
    BL LED1_OFF
    BL LED2_ON		@设置LED2亮
    BL LED3_OFF
    BL DELAY
	
    BL LED1_OFF
    BL LED2_OFF
    BL LED3_ON		@设置LED3亮
    BL DELAY
    b loop
 
LED1_ON:
    LDR R0,=0X50006014   @指定寄存器地址 pe10 50006000
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    ORR R1,R1,#(0x1<<10)   @将第10设置为1
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR

LED1_OFF:
    LDR R0,=0X50006014   @指定寄存器地址
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    BIC R1,R1,#(0x1<<10)   @将第10设置为0
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR

LED2_ON:
    LDR R0,=0X50007014   @指定寄存器地址 pf10 50007000
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    ORR R1,R1,#(0x1<<10)   @将第10设置为1
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR
 
LED2_OFF:
    LDR R0,=0X50007014   @指定寄存器地址
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    BIC R1,R1,#(0x1<<10)   @将第10设置为0
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR

LED3_ON:
    LDR R0,=0X50006014   @指定寄存器地址 pe8 5000
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    ORR R1,R1,#(0x1<<8)   @将第8设置为1
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR

LED3_OFF:
    LDR R0,=0X50006014   @指定寄存器地址
    LDR R1,[R0]  @将寄存器原来的数值读取出来,保存到R1中
    BIC R1,R1,#(0x1<<8)   @将第8设置为0
    STR R1,[R0]  @将修改后的数值写回 
    MOV PC,LR
 
DELAY:
    LDR R3,=0x10000000
MM:
    CMP R3,#0
    SUBNE R3,R3,#1
    BNE MM
    MOV PC,LR
.end
相关推荐
羽获飞40 分钟前
从零开始学嵌入式之STM32——9.STM32的时钟系统
stm32·单片机·嵌入式硬件
飞睿科技1 小时前
乐鑫智能开关方案解析:基于ESP32-C系列的低功耗、高集成设计
嵌入式硬件·物联网·esp32·智能家居·乐鑫科技
来自晴朗的明天2 小时前
13、NMOS 电源防反接电路
单片机·嵌入式硬件·硬件工程
17(无规则自律)3 小时前
深入浅出 Linux 内核模块,写一个内核版的 Hello World
linux·arm开发·嵌入式硬件
芯岭技术3 小时前
PY32MD310单片机:高性能、低功耗的32位电机控制微控制器
单片机·嵌入式硬件
wotaifuzao4 小时前
STM32 + FreeRTOS 的订阅通知组件架构
stm32·嵌入式硬件·架构·freertos·事件驱动·嵌入式架构
小龙报4 小时前
【51单片机】深度解析 51 串口 UART:原理、配置、收发实现与工程化应用全总结
c语言·开发语言·c++·stm32·单片机·嵌入式硬件·51单片机
Lester_110111 小时前
STM32 高级定时器PWM互补输出模式--如果没有死区,突然关闭PWM有产生瞬间导通的可能吗
stm32·单片机·嵌入式硬件·嵌入式软件
小李独爱秋13 小时前
“bootmgr is compressed”错误:根源、笔记本与台式机差异化解决方案深度指南
运维·stm32·单片机·嵌入式硬件·文件系统·电脑故障
梁洪飞15 小时前
内核的schedule和SMP多核处理器启动协议
linux·arm开发·嵌入式硬件·arm