Candle - HuggingFace Rust AI 框架 - 小记

文章目录

    • [关于 Candle](#关于 Candle)
      • 结构
      • 安装
        • [1、With Cuda support :](#1、With Cuda support :)
        • [2、Without Cuda support :](#2、Without Cuda support :)
        • [3、With mkl support](#3、With mkl support)
    • [二、基本使用 Hello world!](#二、基本使用 Hello world!)
      • [1、处理 MNIST 数据集](#1、处理 MNIST 数据集)
      • [2、使用一个 `Linear` 层](#2、使用一个 Linear 层)
      • [3、使用 `candle_nn`](#3、使用 candle_nn)
    • [三、Pytorch cheatsheet](#三、Pytorch cheatsheet)

关于 Candle

Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use.

你可以尝试在线 demos: whisper,LLaMA2, T5, yolo, Segment Anything.



相关文章、教程


结构

Candle 结构包括:

  • Candle-core:核心操作、设备和 Tensor 结构定义。
  • Candle-nn:构建真实模型的工具。
  • Candle-examples:在实际设置中使用库的示例。
  • Candle-kernels:CUDA 自定义内核;
  • Candle-datasets:数据集和数据加载器。
  • Candle-Transformers:与 Transformers 相关的实用程序。
  • Candle-flash-attn:Flash attention v2 层。
  • candle-onnx: ONNX 模型评估。


安装

https://huggingface.github.io/candle/guide/installation.html

安装 Rust: https://blog.csdn.net/lovechris00/article/details/124808034


1、With Cuda support :

1.1 首先,确保 Cuda 被正确安装了

  • nvcc --version 应该打印有关Cuda编译器驱动程序的信息。
  • nvidia-smi --query-gpu=compute_cap --format=csv 应该打印您的GPU计算能力,例如:

bash 复制代码
compute_cap
8.9

您还可以使用 CUDA_COMPUTE_CAP=<compute cap> 环境变量为特定的计算编译 Cuda内核。

如果以上任何命令出错,请确保更新您的Cuda版本。


1.2 创建一个新的app,添加 candle-core 来增加 Cuda 支持。

从创建一个新的 cargo 开始 :

bash 复制代码
cargo new myapp
cd myapp

Make sure to add the candle-core crate with the cuda feature:

确保添加具有cuda功能的 candle-core 被创建:

shell 复制代码
cargo add --git https://github.com/huggingface/candle.git candle-core --features "cuda"

运行 cargo build 来保证所有被正确编译

shell 复制代码
cargo build

2、Without Cuda support :

创建一个新的 app,并添加 candle-core 如下:

shell 复制代码
cargo new myapp
cd myapp
cargo add --git https://github.com/huggingface/candle.git candle-core

最后,运行 cargo build 来保证所有被正确编译

shell 复制代码
cargo build

3、With mkl support

You can also see the mkl feature which could be interesting to get faster inference on CPU. Using mkl


二、基本使用 Hello world!

转载自:Hello world!

1、处理 MNIST 数据集

We will now create the hello world of the ML world, building a model capable of solving MNIST dataset.

Open src/main.rs and fill in this content:

rust 复制代码
use candle_core::{Device, Result, Tensor};

struct Model {
    first: Tensor,
    second: Tensor,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = image.matmul(&self.first)?;
        let x = x.relu()?;
        x.matmul(&self.second)
    }
}

fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    let device = Device::Cpu;

    let first = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
    let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Everything should now run with:

bash 复制代码
cargo run --release

2、使用一个 Linear

Now that we have this, we might want to complexify things a bit, for instance by adding bias and creating the classical Linear layer. We can do as such

rust 复制代码
struct Linear{
    weight: Tensor,
    bias: Tensor,
}
impl Linear{
    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = x.matmul(&self.weight)?;
        x.broadcast_add(&self.bias)
    }
}

struct Model {
    first: Linear,
    second: Linear,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = self.first.forward(image)?;
        let x = x.relu()?;
        self.second.forward(&x)
    }
}

This will change the model running code into a new function

rust 复制代码
fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    // Use Device::Cpu; to use the CPU.
    let device = Device::cuda_if_available(0)?;

    // Creating a dummy model
    let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
    let first = Linear{weight, bias};
    let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
    let second = Linear{weight, bias};
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    // Inference on the model
    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Now it works, it is a great way to create your own layers. But most of the classical layers are already implemented in candle-nn.


3、使用 candle_nn

For instance Linear is already there. This Linear is coded with PyTorch layout in mind, to reuse better existing models out there, so it uses the transpose of the weights and not the weights directly.

So instead we can simplify our example:

bash 复制代码
cargo add --git https://github.com/huggingface/candle.git candle-nn

And rewrite our examples using it

rust 复制代码
use candle_core::{Device, Result, Tensor};
use candle_nn::{Linear, Module};

struct Model {
    first: Linear,
    second: Linear,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = self.first.forward(image)?;
        let x = x.relu()?;
        self.second.forward(&x)
    }
}

fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    let device = Device::Cpu;

    // This has changed (784, 100) -> (100, 784) !
    let weight = Tensor::randn(0f32, 1.0, (100, 784), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
    let first = Linear::new(weight, Some(bias));
    let weight = Tensor::randn(0f32, 1.0, (10, 100), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
    let second = Linear::new(weight, Some(bias));
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Feel free to modify this example to use Conv2d to create a classical convnet instead.

Now that we have the running dummy code we can get to more advanced topics:


三、Pytorch cheatsheet

https://huggingface.github.io/candle/guide/cheatsheet.html#pytorch-cheatsheet

Using PyTorch Using Candle
Creation torch.Tensor([[1, 2], [3, 4]]) Tensor::new(&[[1f32, 2.], [3., 4.]], &Device::Cpu)?
Creation torch.zeros((2, 2)) Tensor::zeros((2, 2), DType::F32, &Device::Cpu)?
Indexing tensor[:, :4] tensor.i((.., ..4))?
Operations tensor.view((2, 2)) tensor.reshape((2, 2))?
Operations a.matmul(b) a.matmul(&b)?
Arithmetic a + b &a + &b
Device tensor.to(device="cuda") tensor.to_device(&Device::new_cuda(0)?)?
Dtype tensor.to(dtype=torch.float16) tensor.to_dtype(&DType::F16)?
Saving torch.save({"A": A}, "model.bin") candle::safetensors::save(&HashMap::from([("A", A)]), "model.safetensors")?
Loading weights = torch.load("model.bin") candle::safetensors::load("model.safetensors", &device)

伊织 2024-03-23

相关推荐
掘金一周9 分钟前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端
白雪讲堂25 分钟前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷31 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
ejinxian37 分钟前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
葡萄成熟时_41 分钟前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
机器之心1 小时前
一篇论文,看见百度广告推荐系统在大模型时代的革新
人工智能
机器之心1 小时前
视觉SSL终于追上了CLIP!Yann LeCun、谢赛宁等新作,逆转VQA任务固有认知
人工智能
赣州云智科技的技术铺子1 小时前
【一步步开发AI运动APP】六、运动计时计数能调用
人工智能·程序员