Candle - HuggingFace Rust AI 框架 - 小记

文章目录

    • [关于 Candle](#关于 Candle)
      • 结构
      • 安装
        • [1、With Cuda support :](#1、With Cuda support :)
        • [2、Without Cuda support :](#2、Without Cuda support :)
        • [3、With mkl support](#3、With mkl support)
    • [二、基本使用 Hello world!](#二、基本使用 Hello world!)
      • [1、处理 MNIST 数据集](#1、处理 MNIST 数据集)
      • [2、使用一个 `Linear` 层](#2、使用一个 Linear 层)
      • [3、使用 `candle_nn`](#3、使用 candle_nn)
    • [三、Pytorch cheatsheet](#三、Pytorch cheatsheet)

关于 Candle

Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use.

你可以尝试在线 demos: whisper,LLaMA2, T5, yolo, Segment Anything.



相关文章、教程


结构

Candle 结构包括:

  • Candle-core:核心操作、设备和 Tensor 结构定义。
  • Candle-nn:构建真实模型的工具。
  • Candle-examples:在实际设置中使用库的示例。
  • Candle-kernels:CUDA 自定义内核;
  • Candle-datasets:数据集和数据加载器。
  • Candle-Transformers:与 Transformers 相关的实用程序。
  • Candle-flash-attn:Flash attention v2 层。
  • candle-onnx: ONNX 模型评估。


安装

https://huggingface.github.io/candle/guide/installation.html

安装 Rust: https://blog.csdn.net/lovechris00/article/details/124808034


1、With Cuda support :

1.1 首先,确保 Cuda 被正确安装了

  • nvcc --version 应该打印有关Cuda编译器驱动程序的信息。
  • nvidia-smi --query-gpu=compute_cap --format=csv 应该打印您的GPU计算能力,例如:

bash 复制代码
compute_cap
8.9

您还可以使用 CUDA_COMPUTE_CAP=<compute cap> 环境变量为特定的计算编译 Cuda内核。

如果以上任何命令出错,请确保更新您的Cuda版本。


1.2 创建一个新的app,添加 candle-core 来增加 Cuda 支持。

从创建一个新的 cargo 开始 :

bash 复制代码
cargo new myapp
cd myapp

Make sure to add the candle-core crate with the cuda feature:

确保添加具有cuda功能的 candle-core 被创建:

shell 复制代码
cargo add --git https://github.com/huggingface/candle.git candle-core --features "cuda"

运行 cargo build 来保证所有被正确编译

shell 复制代码
cargo build

2、Without Cuda support :

创建一个新的 app,并添加 candle-core 如下:

shell 复制代码
cargo new myapp
cd myapp
cargo add --git https://github.com/huggingface/candle.git candle-core

最后,运行 cargo build 来保证所有被正确编译

shell 复制代码
cargo build

3、With mkl support

You can also see the mkl feature which could be interesting to get faster inference on CPU. Using mkl


二、基本使用 Hello world!

转载自:Hello world!

1、处理 MNIST 数据集

We will now create the hello world of the ML world, building a model capable of solving MNIST dataset.

Open src/main.rs and fill in this content:

rust 复制代码
use candle_core::{Device, Result, Tensor};

struct Model {
    first: Tensor,
    second: Tensor,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = image.matmul(&self.first)?;
        let x = x.relu()?;
        x.matmul(&self.second)
    }
}

fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    let device = Device::Cpu;

    let first = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
    let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Everything should now run with:

bash 复制代码
cargo run --release

2、使用一个 Linear

Now that we have this, we might want to complexify things a bit, for instance by adding bias and creating the classical Linear layer. We can do as such

rust 复制代码
struct Linear{
    weight: Tensor,
    bias: Tensor,
}
impl Linear{
    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = x.matmul(&self.weight)?;
        x.broadcast_add(&self.bias)
    }
}

struct Model {
    first: Linear,
    second: Linear,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = self.first.forward(image)?;
        let x = x.relu()?;
        self.second.forward(&x)
    }
}

This will change the model running code into a new function

rust 复制代码
fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    // Use Device::Cpu; to use the CPU.
    let device = Device::cuda_if_available(0)?;

    // Creating a dummy model
    let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
    let first = Linear{weight, bias};
    let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
    let second = Linear{weight, bias};
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    // Inference on the model
    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Now it works, it is a great way to create your own layers. But most of the classical layers are already implemented in candle-nn.


3、使用 candle_nn

For instance Linear is already there. This Linear is coded with PyTorch layout in mind, to reuse better existing models out there, so it uses the transpose of the weights and not the weights directly.

So instead we can simplify our example:

bash 复制代码
cargo add --git https://github.com/huggingface/candle.git candle-nn

And rewrite our examples using it

rust 复制代码
use candle_core::{Device, Result, Tensor};
use candle_nn::{Linear, Module};

struct Model {
    first: Linear,
    second: Linear,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = self.first.forward(image)?;
        let x = x.relu()?;
        self.second.forward(&x)
    }
}

fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    let device = Device::Cpu;

    // This has changed (784, 100) -> (100, 784) !
    let weight = Tensor::randn(0f32, 1.0, (100, 784), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
    let first = Linear::new(weight, Some(bias));
    let weight = Tensor::randn(0f32, 1.0, (10, 100), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
    let second = Linear::new(weight, Some(bias));
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Feel free to modify this example to use Conv2d to create a classical convnet instead.

Now that we have the running dummy code we can get to more advanced topics:


三、Pytorch cheatsheet

https://huggingface.github.io/candle/guide/cheatsheet.html#pytorch-cheatsheet

Using PyTorch Using Candle
Creation torch.Tensor([[1, 2], [3, 4]]) Tensor::new(&[[1f32, 2.], [3., 4.]], &Device::Cpu)?
Creation torch.zeros((2, 2)) Tensor::zeros((2, 2), DType::F32, &Device::Cpu)?
Indexing tensor[:, :4] tensor.i((.., ..4))?
Operations tensor.view((2, 2)) tensor.reshape((2, 2))?
Operations a.matmul(b) a.matmul(&b)?
Arithmetic a + b &a + &b
Device tensor.to(device="cuda") tensor.to_device(&Device::new_cuda(0)?)?
Dtype tensor.to(dtype=torch.float16) tensor.to_dtype(&DType::F16)?
Saving torch.save({"A": A}, "model.bin") candle::safetensors::save(&HashMap::from([("A", A)]), "model.safetensors")?
Loading weights = torch.load("model.bin") candle::safetensors::load("model.safetensors", &device)

伊织 2024-03-23

相关推荐
AIbase202416 分钟前
AI时代企业获取精准流量与实现增长的GEO新引擎
人工智能·搜索引擎·百度
陈敬雷-充电了么-CEO兼CTO17 分钟前
具身智能模拟器:解决机器人实机训练场景局限与成本问题的创新方案
大数据·人工智能·机器学习·chatgpt·机器人·具身智能
东临碣石8221 分钟前
【AI论文】Robix:一种面向机器人交互、推理与规划的统一模型
人工智能
Hello Mr.Z1 小时前
使用pytorch创建/训练/推理OCR模型
人工智能·pytorch·python
wan5555cn1 小时前
文字生视频的“精准”代码设定的核心原则本质是最小化文本语义与视频内容的KL散度
人工智能·笔记·深度学习·音视频
IT_陈寒1 小时前
Python异步编程的7个致命误区:90%开发者踩过的坑及高效解决方案
前端·人工智能·后端
老猿讲编程1 小时前
存算一体:重构AI计算的革命性技术(1)
人工智能·重构
easy20201 小时前
从 Excel 趋势线到机器学习:拆解 AI 背后的核心框架
人工智能·笔记·机器学习
天机️灵韵2 小时前
OpenAvatarChat项目在Windows本地运行指南
人工智能·开源项目·openavatarchat
DeeplyMind2 小时前
AMD KFD驱动技术分析16:SVM Aperture
人工智能·机器学习·amdgpu·rocm·kfd