Candle - HuggingFace Rust AI 框架 - 小记

文章目录

    • [关于 Candle](#关于 Candle)
      • 结构
      • 安装
        • [1、With Cuda support :](#1、With Cuda support :)
        • [2、Without Cuda support :](#2、Without Cuda support :)
        • [3、With mkl support](#3、With mkl support)
    • [二、基本使用 Hello world!](#二、基本使用 Hello world!)
      • [1、处理 MNIST 数据集](#1、处理 MNIST 数据集)
      • [2、使用一个 `Linear` 层](#2、使用一个 Linear 层)
      • [3、使用 `candle_nn`](#3、使用 candle_nn)
    • [三、Pytorch cheatsheet](#三、Pytorch cheatsheet)

关于 Candle

Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use.

你可以尝试在线 demos: whisper,LLaMA2, T5, yolo, Segment Anything.



相关文章、教程


结构

Candle 结构包括:

  • Candle-core:核心操作、设备和 Tensor 结构定义。
  • Candle-nn:构建真实模型的工具。
  • Candle-examples:在实际设置中使用库的示例。
  • Candle-kernels:CUDA 自定义内核;
  • Candle-datasets:数据集和数据加载器。
  • Candle-Transformers:与 Transformers 相关的实用程序。
  • Candle-flash-attn:Flash attention v2 层。
  • candle-onnx: ONNX 模型评估。


安装

https://huggingface.github.io/candle/guide/installation.html

安装 Rust: https://blog.csdn.net/lovechris00/article/details/124808034


1、With Cuda support :

1.1 首先,确保 Cuda 被正确安装了

  • nvcc --version 应该打印有关Cuda编译器驱动程序的信息。
  • nvidia-smi --query-gpu=compute_cap --format=csv 应该打印您的GPU计算能力,例如:

bash 复制代码
compute_cap
8.9

您还可以使用 CUDA_COMPUTE_CAP=<compute cap> 环境变量为特定的计算编译 Cuda内核。

如果以上任何命令出错,请确保更新您的Cuda版本。


1.2 创建一个新的app,添加 candle-core 来增加 Cuda 支持。

从创建一个新的 cargo 开始 :

bash 复制代码
cargo new myapp
cd myapp

Make sure to add the candle-core crate with the cuda feature:

确保添加具有cuda功能的 candle-core 被创建:

shell 复制代码
cargo add --git https://github.com/huggingface/candle.git candle-core --features "cuda"

运行 cargo build 来保证所有被正确编译

shell 复制代码
cargo build

2、Without Cuda support :

创建一个新的 app,并添加 candle-core 如下:

shell 复制代码
cargo new myapp
cd myapp
cargo add --git https://github.com/huggingface/candle.git candle-core

最后,运行 cargo build 来保证所有被正确编译

shell 复制代码
cargo build

3、With mkl support

You can also see the mkl feature which could be interesting to get faster inference on CPU. Using mkl


二、基本使用 Hello world!

转载自:Hello world!

1、处理 MNIST 数据集

We will now create the hello world of the ML world, building a model capable of solving MNIST dataset.

Open src/main.rs and fill in this content:

rust 复制代码
use candle_core::{Device, Result, Tensor};

struct Model {
    first: Tensor,
    second: Tensor,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = image.matmul(&self.first)?;
        let x = x.relu()?;
        x.matmul(&self.second)
    }
}

fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    let device = Device::Cpu;

    let first = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
    let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Everything should now run with:

bash 复制代码
cargo run --release

2、使用一个 Linear

Now that we have this, we might want to complexify things a bit, for instance by adding bias and creating the classical Linear layer. We can do as such

rust 复制代码
struct Linear{
    weight: Tensor,
    bias: Tensor,
}
impl Linear{
    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = x.matmul(&self.weight)?;
        x.broadcast_add(&self.bias)
    }
}

struct Model {
    first: Linear,
    second: Linear,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = self.first.forward(image)?;
        let x = x.relu()?;
        self.second.forward(&x)
    }
}

This will change the model running code into a new function

rust 复制代码
fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    // Use Device::Cpu; to use the CPU.
    let device = Device::cuda_if_available(0)?;

    // Creating a dummy model
    let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
    let first = Linear{weight, bias};
    let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
    let second = Linear{weight, bias};
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    // Inference on the model
    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Now it works, it is a great way to create your own layers. But most of the classical layers are already implemented in candle-nn.


3、使用 candle_nn

For instance Linear is already there. This Linear is coded with PyTorch layout in mind, to reuse better existing models out there, so it uses the transpose of the weights and not the weights directly.

So instead we can simplify our example:

bash 复制代码
cargo add --git https://github.com/huggingface/candle.git candle-nn

And rewrite our examples using it

rust 复制代码
use candle_core::{Device, Result, Tensor};
use candle_nn::{Linear, Module};

struct Model {
    first: Linear,
    second: Linear,
}

impl Model {
    fn forward(&self, image: &Tensor) -> Result<Tensor> {
        let x = self.first.forward(image)?;
        let x = x.relu()?;
        self.second.forward(&x)
    }
}

fn main() -> Result<()> {
    // Use Device::new_cuda(0)?; to use the GPU.
    let device = Device::Cpu;

    // This has changed (784, 100) -> (100, 784) !
    let weight = Tensor::randn(0f32, 1.0, (100, 784), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?;
    let first = Linear::new(weight, Some(bias));
    let weight = Tensor::randn(0f32, 1.0, (10, 100), &device)?;
    let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?;
    let second = Linear::new(weight, Some(bias));
    let model = Model { first, second };

    let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?;

    let digit = model.forward(&dummy_image)?;
    println!("Digit {digit:?} digit");
    Ok(())
}

Feel free to modify this example to use Conv2d to create a classical convnet instead.

Now that we have the running dummy code we can get to more advanced topics:


三、Pytorch cheatsheet

https://huggingface.github.io/candle/guide/cheatsheet.html#pytorch-cheatsheet

Using PyTorch Using Candle
Creation torch.Tensor([[1, 2], [3, 4]]) Tensor::new(&[[1f32, 2.], [3., 4.]], &Device::Cpu)?
Creation torch.zeros((2, 2)) Tensor::zeros((2, 2), DType::F32, &Device::Cpu)?
Indexing tensor[:, :4] tensor.i((.., ..4))?
Operations tensor.view((2, 2)) tensor.reshape((2, 2))?
Operations a.matmul(b) a.matmul(&b)?
Arithmetic a + b &a + &b
Device tensor.to(device="cuda") tensor.to_device(&Device::new_cuda(0)?)?
Dtype tensor.to(dtype=torch.float16) tensor.to_dtype(&DType::F16)?
Saving torch.save({"A": A}, "model.bin") candle::safetensors::save(&HashMap::from([("A", A)]), "model.safetensors")?
Loading weights = torch.load("model.bin") candle::safetensors::load("model.safetensors", &device)

伊织 2024-03-23

相关推荐
冰菓Neko3 分钟前
AI就是个fw
人工智能
学算法的程霖6 分钟前
目标检测135个前沿算法模型汇总(附源码)!
图像处理·人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
J先生x23 分钟前
【IP101】目标检测工作原理:从滑动窗口到Haar特征检测的完整实现
图像处理·人工智能·学习·目标检测·机器学习·计算机视觉·目标跟踪
zhongtianhulian1 小时前
中天智能装备科技有限公司:智能仓储领域的卓越之选
大数据·人工智能·科技
所见即所得111111 小时前
图像噪声模拟
人工智能·深度学习
BOB-wangbaohai6 小时前
LangChain4j入门AI(六)整合提示词(Prompt)
人工智能·prompt·springboot3.x·langchain4j
灬0灬灬0灬7 小时前
pytorch训练可视化工具---TensorBoard
人工智能·pytorch·深度学习
文火冰糖的硅基工坊8 小时前
[创业之路-369]:企业战略管理案例分析-9-战略制定-差距分析的案例之华为
人工智能·华为·架构·系统架构·跨学科·跨学科融合
平和男人杨争争8 小时前
山东大学计算机图形学期末复习15——CG15
人工智能·算法·计算机视觉·图形渲染
lucky_lyovo9 小时前
OpenCV图像边缘检测
人工智能·opencv·计算机视觉