深度学习 (线性回归 简洁实现)

介绍:

在线性神经网络中,线性回归是一种常见的任务,用于预测一个连续的数值输出。其目标是根据输入特征来拟合一个线性函数,使得预测值与真实值之间的误差最小化。

线性回归的数学表达式为:

y = w1x1 + w2x2 + ... + wnxn + b

其中,y表示预测的输出值,x1, x2, ..., xn表示输入特征,w1, w2, ..., wn表示特征的权重,b表示偏置项。

训练线性回归模型的目标是找到最优的权重和偏置项,使得模型预测的输出与真实值之间的平方差(即损失函数)最小化。这一最优化问题可以通过梯度下降等优化算法来解决。

线性回归在深度学习中也被广泛应用,特别是在浅层神经网络中。在深度学习中,通过将多个线性回归模型组合在一起,可以构建更复杂的神经网络结构,以解决更复杂的问题。

深度学习 线性神经网络(线性回归 从零开始实现)-CSDN博客

生成数据集:

python 复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = d2l.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取小批量数据集:

python 复制代码
#选取小批量样本
def load_array(data_arrays,batch_size,is_train=True):
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset,batch_size,shuffle=is_train)

定义模型:

python 复制代码
from torch import nn#"nn"是神经网络的缩写

net = nn.Sequential(nn.Linear(2,1))#输入维度2,输出维度1

定义损失函数:

python 复制代码
loss = nn.MSELoss()#均分误差函数

定义优化函数(实例化SGD):

python 复制代码
#实例化SGD
trainer = torch.optim.SGD(net.parameters(),lr=0.03)#参数、学习率

模型训练:

python 复制代码
num_epochs=8
for epoch in range(num_epochs):
    for X, y in data_iter:#拿出一批量x,y
        l = loss(net(X), y)  # X和y的小批量损失,实际的和预测的
        trainer.zero_grad()
        l.backward()
        trainer.step()  # 使用参数的梯度更新参数
    l = loss(net(features),labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

'''
epoch 1, loss 0.000175
epoch 2, loss 0.000096
epoch 3, loss 0.000095
epoch 4, loss 0.000095
epoch 5, loss 0.000095
epoch 6, loss 0.000095
epoch 7, loss 0.000095
epoch 8, loss 0.000096
'''

print(net[0].weight)
'''
Parameter containing:
tensor([[ 2.0004, -3.3990]], requires_grad=True)
'''

print(net[0].bias)
'''
Parameter containing:
tensor([4.2007], requires_grad=True)

'''
相关推荐
kyle~7 分钟前
OpenCV---特征检测算法(ORB,Oriented FAST and Rotated BRIEF)
人工智能·opencv·算法
小五12715 分钟前
机器学习(决策树)
人工智能·决策树·机器学习
没有不重的名么23 分钟前
Tmux Xftp及Xshell的服务器使用方法
服务器·人工智能·深度学习·机器学习·ssh
wayman_he_何大民41 分钟前
初识机器学习算法 - AUM时间序列分析
前端·人工智能
什么都想学的阿超2 小时前
【大语言模型 00】导读
人工智能·语言模型·自然语言处理
lxmyzzs2 小时前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
明心知2 小时前
DAY 45 Tensorboard使用介绍
人工智能·深度学习
维维180-3121-14552 小时前
AI大模型+Meta分析:助力发表高水平SCI论文
人工智能·meta分析·医学·地学
程序员陆通2 小时前
CloudBase AI ToolKit + VSCode Copilot:打造高效智能云端开发新体验
人工智能·vscode·copilot
程高兴2 小时前
遗传算法求解冷链路径优化问题matlab代码
开发语言·人工智能·matlab