深度学习 (线性回归 简洁实现)

介绍:

在线性神经网络中,线性回归是一种常见的任务,用于预测一个连续的数值输出。其目标是根据输入特征来拟合一个线性函数,使得预测值与真实值之间的误差最小化。

线性回归的数学表达式为:

y = w1x1 + w2x2 + ... + wnxn + b

其中,y表示预测的输出值,x1, x2, ..., xn表示输入特征,w1, w2, ..., wn表示特征的权重,b表示偏置项。

训练线性回归模型的目标是找到最优的权重和偏置项,使得模型预测的输出与真实值之间的平方差(即损失函数)最小化。这一最优化问题可以通过梯度下降等优化算法来解决。

线性回归在深度学习中也被广泛应用,特别是在浅层神经网络中。在深度学习中,通过将多个线性回归模型组合在一起,可以构建更复杂的神经网络结构,以解决更复杂的问题。

深度学习 线性神经网络(线性回归 从零开始实现)-CSDN博客

生成数据集:

python 复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = d2l.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取小批量数据集:

python 复制代码
#选取小批量样本
def load_array(data_arrays,batch_size,is_train=True):
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset,batch_size,shuffle=is_train)

定义模型:

python 复制代码
from torch import nn#"nn"是神经网络的缩写

net = nn.Sequential(nn.Linear(2,1))#输入维度2,输出维度1

定义损失函数:

python 复制代码
loss = nn.MSELoss()#均分误差函数

定义优化函数(实例化SGD):

python 复制代码
#实例化SGD
trainer = torch.optim.SGD(net.parameters(),lr=0.03)#参数、学习率

模型训练:

python 复制代码
num_epochs=8
for epoch in range(num_epochs):
    for X, y in data_iter:#拿出一批量x,y
        l = loss(net(X), y)  # X和y的小批量损失,实际的和预测的
        trainer.zero_grad()
        l.backward()
        trainer.step()  # 使用参数的梯度更新参数
    l = loss(net(features),labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

'''
epoch 1, loss 0.000175
epoch 2, loss 0.000096
epoch 3, loss 0.000095
epoch 4, loss 0.000095
epoch 5, loss 0.000095
epoch 6, loss 0.000095
epoch 7, loss 0.000095
epoch 8, loss 0.000096
'''

print(net[0].weight)
'''
Parameter containing:
tensor([[ 2.0004, -3.3990]], requires_grad=True)
'''

print(net[0].bias)
'''
Parameter containing:
tensor([4.2007], requires_grad=True)

'''
相关推荐
睿创咨询16 分钟前
科技与商业动态简报
人工智能·科技·ipd·商业
科技在线16 分钟前
科技赋能建筑新未来:中建海龙模块化建筑产品入选中国建筑首批产业化推广产品
大数据·人工智能
HED26 分钟前
用扣子快速手撸人生中第一个AI智能应用!
前端·人工智能
极小狐28 分钟前
极狐GitLab 如何 cherry-pick 变更?
人工智能·git·机器学习·gitlab
小宋加油啊30 分钟前
深度学习小记(包括pytorch 还有一些神经网络架构)
pytorch·深度学习·神经网络
沛沛老爹33 分钟前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh
0x21141 分钟前
[论文阅读]ReAct: Synergizing Reasoning and Acting in Language Models
人工智能·语言模型·自然语言处理
何大春1 小时前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
mucheni1 小时前
迅为iTOP-RK3576开发板/核心板6TOPS超强算力NPU适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品
arm开发·人工智能·边缘计算
Jamence1 小时前
多模态大语言模型arxiv论文略读(三十六)
人工智能·语言模型·自然语言处理