深度学习 (线性回归 简洁实现)

介绍:

在线性神经网络中,线性回归是一种常见的任务,用于预测一个连续的数值输出。其目标是根据输入特征来拟合一个线性函数,使得预测值与真实值之间的误差最小化。

线性回归的数学表达式为:

y = w1x1 + w2x2 + ... + wnxn + b

其中,y表示预测的输出值,x1, x2, ..., xn表示输入特征,w1, w2, ..., wn表示特征的权重,b表示偏置项。

训练线性回归模型的目标是找到最优的权重和偏置项,使得模型预测的输出与真实值之间的平方差(即损失函数)最小化。这一最优化问题可以通过梯度下降等优化算法来解决。

线性回归在深度学习中也被广泛应用,特别是在浅层神经网络中。在深度学习中,通过将多个线性回归模型组合在一起,可以构建更复杂的神经网络结构,以解决更复杂的问题。

深度学习 线性神经网络(线性回归 从零开始实现)-CSDN博客

生成数据集:

python 复制代码
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = d2l.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

读取小批量数据集:

python 复制代码
#选取小批量样本
def load_array(data_arrays,batch_size,is_train=True):
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset,batch_size,shuffle=is_train)

定义模型:

python 复制代码
from torch import nn#"nn"是神经网络的缩写

net = nn.Sequential(nn.Linear(2,1))#输入维度2,输出维度1

定义损失函数:

python 复制代码
loss = nn.MSELoss()#均分误差函数

定义优化函数(实例化SGD):

python 复制代码
#实例化SGD
trainer = torch.optim.SGD(net.parameters(),lr=0.03)#参数、学习率

模型训练:

python 复制代码
num_epochs=8
for epoch in range(num_epochs):
    for X, y in data_iter:#拿出一批量x,y
        l = loss(net(X), y)  # X和y的小批量损失,实际的和预测的
        trainer.zero_grad()
        l.backward()
        trainer.step()  # 使用参数的梯度更新参数
    l = loss(net(features),labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

'''
epoch 1, loss 0.000175
epoch 2, loss 0.000096
epoch 3, loss 0.000095
epoch 4, loss 0.000095
epoch 5, loss 0.000095
epoch 6, loss 0.000095
epoch 7, loss 0.000095
epoch 8, loss 0.000096
'''

print(net[0].weight)
'''
Parameter containing:
tensor([[ 2.0004, -3.3990]], requires_grad=True)
'''

print(net[0].bias)
'''
Parameter containing:
tensor([4.2007], requires_grad=True)

'''
相关推荐
人工智能训练1 天前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海1 天前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor1 天前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19821 天前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了1 天前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队1 天前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒1 天前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6001 天前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房1 天前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20111 天前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习