视频中的车流量统计_3.13

目标

  • 了解视频中处理车流量统计的方法

前面已经完成了视频中车辆的检测功能,下面我们对车辆进行跟踪,并将跟踪结果绘制在视频中。

主要分为以下步骤:

  • 对目标进行追踪
  • 绘制车辆计数结果
  • 将检测结果绘制在视频中并进行保存

1.对目标进行追踪

    # yolo中检测结果为0时,传入跟踪器中会出现错误,在这里判断下,未检测到目标时不进行目标追踪
    if np.size(dets) == 0:
        continue
    else:
        tracks = tracker.update(dets)  # 将检测结果传入跟踪器中,返回当前画面中跟踪成功的目标,包含五个信息:目标框的左上角和右下角横纵坐标,目标的置信度

    # 对跟踪器返回的结果进行处理
    boxes = []  # 存放tracks中的前四个值:目标框的左上角横纵坐标和右下角的横纵坐标
    indexIDs = []  # 存放tracks中的最后一个值:置信度,用来作为memory中跟踪框的Key
    previous = memory.copy()  # 用于存放上一帧的跟踪结果,用于碰撞检测
    memory = {} # 存放当前帧目标的跟踪结果,用于碰撞检测
    # 遍历跟踪结果,对参数进行更新
    for track in tracks:
        boxes.append([track[0], track[1], track[2], track[3]])  # 更新目标框坐标信息
        indexIDs.append(int(track[4]))  # 更新置信度信息
        memory[indexIDs[-1]] = boxes[-1]  # 将跟踪框以key为:置信度,value为:跟踪框坐标形式存入memory中
  1. 绘制车辆计数的相关信息

    cv2.line(frame, line[0], line[1], (0, 255, 0), 3) # 根据设置的基准线将其绘制在画面上
    cv2.putText(frame, str(counter), (30, 80), cv2.FONT_HERSHEY_DUPLEX, 3.0, (255, 0, 0), 3) # 绘制车辆的总计数
    cv2.putText(frame, str(counter_up), (130, 80), cv2.FONT_HERSHEY_DUPLEX, 3.0, (0, 255, 0), 3) # 绘制车辆正向行驶的计数
    cv2.putText(frame, str(counter_down), (230, 80), cv2.FONT_HERSHEY_DUPLEX, 3.0, (0, 0, 255), 3) # 绘制车辆逆向行驶的计数

将结果保存在视频中

# 未设置视频的编解码信息时,执行以下代码
    if writer is None:
        # 设置编码格式
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        # 视频信息设置
        writer = cv2.VideoWriter("./output/output.mp4",
                                 fourcc,
                                 30,
                                 (frame.shape[1], frame.shape[0]),
                                 True)
    # 将处理后的帧写入到视频中
    writer.write(frame)
    # 显示当前帧的结果
    cv2.imshow("", frame)
    # 按下q键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
相关推荐
Chef_Chen9 分钟前
从0开始学习机器学习--Day33--机器学习阶段总结
人工智能·学习·机器学习
搏博9 分钟前
神经网络问题之:梯度不稳定
人工智能·深度学习·神经网络
Sxiaocai25 分钟前
使用 PyTorch 实现并训练 VGGNet 用于 MNIST 分类
pytorch·深度学习·分类
GL_Rain26 分钟前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
shansjqun31 分钟前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
狸克先生33 分钟前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
baiduopenmap1 小时前
百度世界2024精选公开课:基于地图智能体的导航出行AI应用创新实践
前端·人工智能·百度地图
小任同学Alex1 小时前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型
新加坡内哥谈技术1 小时前
微软 Ignite 2024 大会
人工智能
江瀚视野1 小时前
Q3净利增长超预期,文心大模型调用量大增,百度未来如何分析?
人工智能