基于CNN、GRU、Inception、LSTM、随机森林和SVM的轴承故障诊断

当传感器采集到振动信号后,由于其特征并不明显且可能受到噪声的影响,所以需要对信号进行处理并提取特征,以便进一步对故障进行分类。传统的故障诊断方法中,通常从时域、频域、时频域对信号进行特征提取。

但时域、频域、时频域特征提取方法均需要通过人工提取信号的故障特征,过于依赖专家经验知识,这种故障诊断方法较为传统,而实际工业中的设备数据量较大,且由于工作环境的影响,会导致信号中掺杂大量冗余噪声,这时如果使用传统的故障诊断方法,将会导致信号处理困难,特征提取不完全,耗费大量的人力资源。相较传统的故障诊断方法,结合了深度学习的故障诊断方法可以通过训练模型,自适应地从振动信号中提取特征,替代了传统故障诊断方法中的特征提取、选择和故障分类的步骤,节省了大量的人力,且故障诊断的效果优于传统方法。目前已有大量深度学习模型被应用于故障诊断领域中,例如:自动编码器、卷积神经网络CNN、循环神经网络等。

本项目采用CNN、GRU、Inception、LSTM、随机森林和SVM等模型对滚动轴承进行故障识别,数据集采用西储大学轴承数据集,运行环境为Python。

所用模块如下:

复制代码
from time import sleep
from tensorflow import keras
from OriginalVibrationSignal import ovs_preprocess
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import random
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
from datetime import datetime
import numpy as np
import tensorflow as tf
from sklearn.manifold import TSNE

主要模块版本如下:

复制代码
tensorflow=2.8.0
keras=2.8.0
sklearn=1.0.2
Python=3.9.0

以CNN模型为例,部分代码如下:

复制代码
#加载相关模块
from time import sleep
from tensorflow import keras
from OriginalVibrationSignal import ovs_preprocess
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import random
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
from datetime import datetime
import numpy as np
import tensorflow as tf
from sklearn.manifold import TSNE

#如果是GPU,需要去掉注释,如果是CPU,则注释
# gpu = tf.config.experimental.list_physical_devices(device_type='GPU')
# assert len(gpu) == 1
# tf.config.experimental.set_memory_growth(gpu[0], True)

def subtime(date1, date2):
    return date2 - date1


num_classes = 10    # 样本类别
length = 784        # 样本长度
number = 300  # 每类样本的数量
normal = True  # 是否标准化
rate = [0.5, 0.25, 0.25]  # 测试集验证集划分比例

path = r'data/0HP'
x_train, y_train, x_valid, y_valid, x_test, y_test = ovs_preprocess.prepro(
    d_path=path,
    length=length,
    number=number,
    normal=normal,
    rate=rate,
    enc=False, enc_step=28)

x_train = np.array(x_train)
y_train = np.array(y_train)
x_valid = np.array(x_valid)
y_valid = np.array(y_valid)
x_test = np.array(x_test)
y_test = np.array(y_test)


print(x_train.shape)
print(x_valid.shape)
print(x_test.shape)
print(y_train.shape)
print(y_valid.shape)
print(y_test.shape)


y_train = [int(i) for i in y_train]
y_valid = [int(i) for i in y_valid]
y_test = [int(i) for i in y_test]

# 打乱顺序
index = [i for i in range(len(x_train))]
random.seed(1)
random.shuffle(index)
x_train = np.array(x_train)[index]
y_train = np.array(y_train)[index]

index1 = [i for i in range(len(x_valid))]
random.shuffle(index1)
x_valid = np.array(x_valid)[index1]
y_valid = np.array(y_valid)[index1]

index2 = [i for i in range(len(x_test))]
random.shuffle(index2)
x_test = np.array(x_test)[index2]
y_test = np.array(y_test)[index2]

print(x_train.shape)
print(x_valid.shape)
print(x_test.shape)
print(y_train)
print(y_valid)
print(y_test)
print("x_train的最大值和最小值:", x_train.max(), x_train.min())
print("x_test的最大值和最小值:", x_test.max(), x_test.min())

x_train = tf.reshape(x_train, (len(x_train), 784, 1))
x_valid = tf.reshape(x_valid, (len(x_valid), 784, 1))
x_test = tf.reshape(x_test, (len(x_test), 784, 1))


# 保存最佳模型
class CustomModelCheckpoint(keras.callbacks.Callback):
    def __init__(self, model, path):
        self.model = model
        self.path = path
        self.best_loss = np.inf

    def on_epoch_end(self, epoch, logs=None):
        val_loss = logs['val_loss']
        if val_loss < self.best_loss:
            print("\nValidation loss decreased from {} to {}, saving model".format(self.best_loss, val_loss))
            self.model.save_weights(self.path, overwrite=True)
            self.best_loss = val_loss

# t-sne初始可视化函数
def start_tsne():
    print("正在进行初始输入数据的可视化...")
    x_train1 = tf.reshape(x_train, (len(x_train), 784))
    X_tsne = TSNE().fit_transform(x_train1)
    plt.figure(figsize=(10, 10))
    plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_train)
    plt.colorbar()
    plt.show()

start_tsne()
# sleep(600000)

# 模型定义
def mymodel():
model = mymodel()

model.summary()
startdate = datetime.utcnow()  # 获取当前时间

# 编译模型
model.compile(
    optimizer=keras.optimizers.Adam(),
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy'])

history = model.fit(x_train, y_train,
                    batch_size=256, epochs=50, verbose=1,
                    validation_data=(x_valid, y_valid),
                    callbacks=[CustomModelCheckpoint(
  model, r'best_sign_cnn.h5')])

#加载模型
# filepath = r'best_sign_cnn.h5'
model.load_weights(filepath='best_sign_cnn.h5')
# 编译模型
model.compile(loss='sparse_categorical_crossentropy', optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
# 评估模型
scores = model.evaluate(x_test, y_test, verbose=1)
print('%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))

y_predict = model.predict(x_test)
y_pred_int = np.argmax(y_predict, axis=1)
print(y_pred_int[0:5])
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred_int, digits=4))

def acc_line():
    # 绘制acc和loss曲线
    acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']

    epochs = range(len(acc))  # Get number of epochs

    # 画accuracy曲线
    plt.plot(epochs, acc, 'r', linestyle='-.')
    plt.plot(epochs, val_acc, 'b', linestyle='dashdot')
    plt.title('Training and validation accuracy')
    plt.xlabel("Epochs")
    plt.ylabel("Accuracy")
    plt.legend(["Accuracy", "Validation Accuracy"])

    plt.figure()

    # 画loss曲线
    plt.plot(epochs, loss, 'r', linestyle='-.')
    plt.plot(epochs, val_loss, 'b', linestyle='dashdot')
    plt.title('Training and validation loss')
    plt.xlabel("Epochs")
    plt.ylabel("Loss")
    plt.legend(["Loss", "Validation Loss"])
    # plt.figure()
    plt.show()


acc_line()


# 绘制混淆矩阵
def confusion():
    y_pred_gailv = model.predict(x_test, verbose=1)
    y_pred_int = np.argmax(y_pred_gailv, axis=1)
    print(len(y_pred_int))
    con_mat = confusion_matrix(y_test.astype(str), y_pred_int.astype(str))
    print(con_mat)
    classes = list(set(y_train))
    classes.sort()
    plt.imshow(con_mat, cmap=plt.cm.Blues)
    indices = range(len(con_mat))
    plt.xticks(indices, classes)
    plt.yticks(indices, classes)
    plt.colorbar()
    plt.xlabel('guess')
    plt.ylabel('true')
    for first_index in range(len(con_mat)):
        for second_index in range(len(con_mat[first_index])):
            plt.text(first_index, second_index, con_mat[second_index][first_index], va='center', ha='center')
    plt.show()
confusion()

出图如下:

完整代码可通过知乎学术咨询获得:

基于CNN、GRU、Inception、LSTM、随机森林和SVM的轴承故障诊断

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
feixiangyuncai14 分钟前
Bentley软件迎新任首席营销官,驱动AI营销新动力
人工智能·智慧城市·能源·交通物流
MARS_AI_21 分钟前
云蝠智能VoiceAgent 9月升级概览:从功能交互到用户体验
人工智能·自然语言处理·交互·信息与通信·agi
飞哥数智坊25 分钟前
“狗都不用”的 Cursor Auto 模式,竟靠 Plan Mode 真香回归?
人工智能·ai编程·cursor
Mr.Winter`26 分钟前
深度强化学习 | 基于SAC算法的动态避障(ROS C++仿真)
人工智能·深度学习·神经网络·机器人·自动驾驶·ros·具身智能
东方芷兰33 分钟前
LLM 笔记 —— 07 Tokenizers(BPE、WordPeice、SentencePiece、Unigram)
人工智能·笔记·深度学习·神经网络·语言模型·自然语言处理·nlp
hqyjzsb1 小时前
2025 年项目管理转型白皮书:AI 驱动下的能力重构与跨域突破
开发语言·人工智能·重构·产品经理·编程语言·caie
Juchecar1 小时前
大模型开源闭源之前景分析
人工智能
萤丰信息1 小时前
从超级大脑到智能毛细血管:四大技术重构智慧园区生态版图
java·人工智能·科技·重构·架构·智慧园区
棱镜研途1 小时前
科研快报 |声波“听”见火灾温度:混合深度学习重构三维温度场
人工智能·深度学习·目标检测·重构·传感·声波测温·火灾安全