力扣---最长公共子序列---二维动态规划

思想:

  1. 定义g[i][j]:text1的前i位和text2的前j位的最长公共子序列长度。
  2. 递推公式:如果text[i]==text[j],那么只需要看g[i-1][j-1]即可,此时g[i][j]=g[i-1][j-1]+1。如果text[i]!=text[j],那么g[i][j]=max(g[i-1][j],g[i][j-1],g[i-1][j-1])
  3. 数组初始化:由g[i-1][j],g[i][j-1],g[i-1][j-1]推及g[i][j],即由左上角向右下角推(两层for循环都是从小到大遍历,推荐博客:力扣---最长回文子串---二维动态规划-CSDN博客(考察for循环遍历顺序)),需要初始化第0行和第0列。

代码:

C++:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1=text1.size();
        int len2=text2.size();
        vector<vector<int>> g(len1,vector<int>(len2,0));
        //g[0][0]
        if(text1[0]==text2[0]){g[0][0]=1;}
        else{
            g[0][0]=0;
        }
        //g[0][i]+g[i][0]
        for(int i=1;i<len2;i++){
            if(text1[0]==text2[i]){g[0][i]=1;}
            else{
                g[0][i]=g[0][i-1];
            }
        }
        //cout<<"***"<<endl;
        for(int i=1;i<len1;i++){
            if(text1[i]==text2[0]){g[i][0]=1;}
            else{
                g[i][0]=g[i-1][0];
            }
        }

        for(int i=1;i<len1;i++){
            for(int j=1;j<len2;j++){
                if(text1[i]==text2[j]){
                    g[i][j]=g[i-1][j-1]+1;
                }
                else{
                    g[i][j]=max(g[i-1][j],g[i][j-1]);
                    g[i][j]=max(g[i][j],g[i-1][j-1]);
                }
            }
        }
        return g[len1-1][len2-1];
    }
};

Python:

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1=len(text1)
        len2=len(text2)
        g=[[0 for _ in range(len2)] for _ in range(len1)]
        if text1[0]==text2[0]:
            g[0][0]=1
        else:
            g[0][0]=0
        
        for i in range(1,len2):
            if text1[0]==text2[i]:
                g[0][i]=1
            else:
                g[0][i]=g[0][i-1]
        
        for i in range(1,len1):
            if text1[i]==text2[0]:
                g[i][0]=1
            else:
                g[i][0]=g[i-1][0]
        
        for i in range(1,len1):
            for j in range(1,len2):
                if text1[i]==text2[j]:
                    g[i][j]=g[i-1][j-1]+1
                else:
                    g[i][j]=max(g[i-1][j],g[i][j-1])
                    g[i][j]=max(g[i][j],g[i-1][j-1])
        return g[len1-1][len2-1]
相关推荐
kyle~13 分钟前
OpenCV---特征检测算法(ORB,Oriented FAST and Rotated BRIEF)
人工智能·opencv·算法
初学小刘20 分钟前
决策树:机器学习中的强大工具
算法·决策树·机器学习
山顶风景独好22 分钟前
【Leetcode】随笔
数据结构·算法·leetcode
科大饭桶1 小时前
C++入门自学Day11-- String, Vector, List 复习
c语言·开发语言·数据结构·c++·容器
lxmyzzs2 小时前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
wow_DG3 小时前
【C++✨】多种 C++ 解法固定宽度右对齐输出(每个数占 8 列)
开发语言·c++·算法
Epiphany.5563 小时前
c++最长上升子序列长度
c++·算法·图论
Cx330❀3 小时前
【数据结构初阶】--排序(四):归并排序
c语言·开发语言·数据结构·算法·排序算法
余_弦4 小时前
区块链中的密码学 —— 密钥派生算法
算法·区块链
艾莉丝努力练剑4 小时前
【C语言16天强化训练】从基础入门到进阶:Day 1
c语言·开发语言·数据结构·学习