力扣---最长公共子序列---二维动态规划

思想:

  1. 定义g[i][j]:text1的前i位和text2的前j位的最长公共子序列长度。
  2. 递推公式:如果text[i]==text[j],那么只需要看g[i-1][j-1]即可,此时g[i][j]=g[i-1][j-1]+1。如果text[i]!=text[j],那么g[i][j]=max(g[i-1][j],g[i][j-1],g[i-1][j-1])
  3. 数组初始化:由g[i-1][j],g[i][j-1],g[i-1][j-1]推及g[i][j],即由左上角向右下角推(两层for循环都是从小到大遍历,推荐博客:力扣---最长回文子串---二维动态规划-CSDN博客(考察for循环遍历顺序)),需要初始化第0行和第0列。

代码:

C++:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1=text1.size();
        int len2=text2.size();
        vector<vector<int>> g(len1,vector<int>(len2,0));
        //g[0][0]
        if(text1[0]==text2[0]){g[0][0]=1;}
        else{
            g[0][0]=0;
        }
        //g[0][i]+g[i][0]
        for(int i=1;i<len2;i++){
            if(text1[0]==text2[i]){g[0][i]=1;}
            else{
                g[0][i]=g[0][i-1];
            }
        }
        //cout<<"***"<<endl;
        for(int i=1;i<len1;i++){
            if(text1[i]==text2[0]){g[i][0]=1;}
            else{
                g[i][0]=g[i-1][0];
            }
        }

        for(int i=1;i<len1;i++){
            for(int j=1;j<len2;j++){
                if(text1[i]==text2[j]){
                    g[i][j]=g[i-1][j-1]+1;
                }
                else{
                    g[i][j]=max(g[i-1][j],g[i][j-1]);
                    g[i][j]=max(g[i][j],g[i-1][j-1]);
                }
            }
        }
        return g[len1-1][len2-1];
    }
};

Python:

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1=len(text1)
        len2=len(text2)
        g=[[0 for _ in range(len2)] for _ in range(len1)]
        if text1[0]==text2[0]:
            g[0][0]=1
        else:
            g[0][0]=0
        
        for i in range(1,len2):
            if text1[0]==text2[i]:
                g[0][i]=1
            else:
                g[0][i]=g[0][i-1]
        
        for i in range(1,len1):
            if text1[i]==text2[0]:
                g[i][0]=1
            else:
                g[i][0]=g[i-1][0]
        
        for i in range(1,len1):
            for j in range(1,len2):
                if text1[i]==text2[j]:
                    g[i][j]=g[i-1][j-1]+1
                else:
                    g[i][j]=max(g[i-1][j],g[i][j-1])
                    g[i][j]=max(g[i][j],g[i-1][j-1])
        return g[len1-1][len2-1]
相关推荐
Jay20021117 分钟前
【机器学习】33 强化学习 - 连续状态空间(DQN算法)
人工智能·算法·机器学习
铭哥的编程日记15 分钟前
后端面试通关笔记:从真题到思路(五)
面试·职场和发展
panzer_maus16 分钟前
归并排序的简单介绍
java·数据结构·算法
摆烂且佛系31 分钟前
B+树的“页分裂“机制
数据结构·b树
cici158741 小时前
二值化断裂裂缝的智能拼接算法
人工智能·算法·计算机视觉
麦格芬2301 小时前
LeetCode 763 划分字母区间
算法·leetcode·职场和发展
福尔摩斯张1 小时前
C++核心特性精讲:从C语言痛点出发,掌握现代C++编程精髓(超详细)
java·linux·c语言·数据结构·c++·驱动开发·算法
面试鸭2 小时前
携程开启秋招补录
职场和发展·互联网
涛涛北京2 小时前
【强化学习实验】- 策略梯度算法
人工智能·算法
栀秋6662 小时前
深入浅出链表操作:从Dummy节点到快慢指针的实战精要
前端·javascript·算法