力扣---最长公共子序列---二维动态规划

思想:

  1. 定义g[i][j]:text1的前i位和text2的前j位的最长公共子序列长度。
  2. 递推公式:如果text[i]==text[j],那么只需要看g[i-1][j-1]即可,此时g[i][j]=g[i-1][j-1]+1。如果text[i]!=text[j],那么g[i][j]=max(g[i-1][j],g[i][j-1],g[i-1][j-1])
  3. 数组初始化:由g[i-1][j],g[i][j-1],g[i-1][j-1]推及g[i][j],即由左上角向右下角推(两层for循环都是从小到大遍历,推荐博客:力扣---最长回文子串---二维动态规划-CSDN博客(考察for循环遍历顺序)),需要初始化第0行和第0列。

代码:

C++:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1=text1.size();
        int len2=text2.size();
        vector<vector<int>> g(len1,vector<int>(len2,0));
        //g[0][0]
        if(text1[0]==text2[0]){g[0][0]=1;}
        else{
            g[0][0]=0;
        }
        //g[0][i]+g[i][0]
        for(int i=1;i<len2;i++){
            if(text1[0]==text2[i]){g[0][i]=1;}
            else{
                g[0][i]=g[0][i-1];
            }
        }
        //cout<<"***"<<endl;
        for(int i=1;i<len1;i++){
            if(text1[i]==text2[0]){g[i][0]=1;}
            else{
                g[i][0]=g[i-1][0];
            }
        }

        for(int i=1;i<len1;i++){
            for(int j=1;j<len2;j++){
                if(text1[i]==text2[j]){
                    g[i][j]=g[i-1][j-1]+1;
                }
                else{
                    g[i][j]=max(g[i-1][j],g[i][j-1]);
                    g[i][j]=max(g[i][j],g[i-1][j-1]);
                }
            }
        }
        return g[len1-1][len2-1];
    }
};

Python:

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1=len(text1)
        len2=len(text2)
        g=[[0 for _ in range(len2)] for _ in range(len1)]
        if text1[0]==text2[0]:
            g[0][0]=1
        else:
            g[0][0]=0
        
        for i in range(1,len2):
            if text1[0]==text2[i]:
                g[0][i]=1
            else:
                g[0][i]=g[0][i-1]
        
        for i in range(1,len1):
            if text1[i]==text2[0]:
                g[i][0]=1
            else:
                g[i][0]=g[i-1][0]
        
        for i in range(1,len1):
            for j in range(1,len2):
                if text1[i]==text2[j]:
                    g[i][j]=g[i-1][j-1]+1
                else:
                    g[i][j]=max(g[i-1][j],g[i][j-1])
                    g[i][j]=max(g[i][j],g[i-1][j-1])
        return g[len1-1][len2-1]
相关推荐
martian66511 分钟前
支持向量机(SVM)深度解析:从数学根基到工程实践
算法·机器学习·支持向量机
孟大本事要学习15 分钟前
算法19天|回溯算法:理论基础、组合、组合总和Ⅲ、电话号码的字母组合
算法
SuperW20 分钟前
数据结构——队列
数据结构
??tobenewyorker1 小时前
力扣打卡第二十一天 中后遍历+中前遍历 构造二叉树
数据结构·c++·算法·leetcode
蓝澈11211 小时前
迪杰斯特拉算法之解决单源最短路径问题
java·数据结构
贾全1 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
GIS小天2 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
满分观察网友z2 小时前
开发者的“右”眼:一个树问题如何拯救我的UI设计(199. 二叉树的右视图)
算法
森焱森3 小时前
无人机三轴稳定化控制(1)____飞机的稳定控制逻辑
c语言·单片机·算法·无人机
循环过三天3 小时前
3-1 PID算法改进(积分部分)
笔记·stm32·单片机·学习·算法·pid