力扣---最长公共子序列---二维动态规划

思想:

  1. 定义g[i][j]:text1的前i位和text2的前j位的最长公共子序列长度。
  2. 递推公式:如果text[i]==text[j],那么只需要看g[i-1][j-1]即可,此时g[i][j]=g[i-1][j-1]+1。如果text[i]!=text[j],那么g[i][j]=max(g[i-1][j],g[i][j-1],g[i-1][j-1])
  3. 数组初始化:由g[i-1][j],g[i][j-1],g[i-1][j-1]推及g[i][j],即由左上角向右下角推(两层for循环都是从小到大遍历,推荐博客:力扣---最长回文子串---二维动态规划-CSDN博客(考察for循环遍历顺序)),需要初始化第0行和第0列。

代码:

C++:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1=text1.size();
        int len2=text2.size();
        vector<vector<int>> g(len1,vector<int>(len2,0));
        //g[0][0]
        if(text1[0]==text2[0]){g[0][0]=1;}
        else{
            g[0][0]=0;
        }
        //g[0][i]+g[i][0]
        for(int i=1;i<len2;i++){
            if(text1[0]==text2[i]){g[0][i]=1;}
            else{
                g[0][i]=g[0][i-1];
            }
        }
        //cout<<"***"<<endl;
        for(int i=1;i<len1;i++){
            if(text1[i]==text2[0]){g[i][0]=1;}
            else{
                g[i][0]=g[i-1][0];
            }
        }

        for(int i=1;i<len1;i++){
            for(int j=1;j<len2;j++){
                if(text1[i]==text2[j]){
                    g[i][j]=g[i-1][j-1]+1;
                }
                else{
                    g[i][j]=max(g[i-1][j],g[i][j-1]);
                    g[i][j]=max(g[i][j],g[i-1][j-1]);
                }
            }
        }
        return g[len1-1][len2-1];
    }
};

Python:

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1=len(text1)
        len2=len(text2)
        g=[[0 for _ in range(len2)] for _ in range(len1)]
        if text1[0]==text2[0]:
            g[0][0]=1
        else:
            g[0][0]=0
        
        for i in range(1,len2):
            if text1[0]==text2[i]:
                g[0][i]=1
            else:
                g[0][i]=g[0][i-1]
        
        for i in range(1,len1):
            if text1[i]==text2[0]:
                g[i][0]=1
            else:
                g[i][0]=g[i-1][0]
        
        for i in range(1,len1):
            for j in range(1,len2):
                if text1[i]==text2[j]:
                    g[i][j]=g[i-1][j-1]+1
                else:
                    g[i][j]=max(g[i-1][j],g[i][j-1])
                    g[i][j]=max(g[i][j],g[i-1][j-1])
        return g[len1-1][len2-1]
相关推荐
别动哪条鱼3 小时前
FFmpeg 核心数据结构关系图
数据结构·ffmpeg
小龙报3 小时前
《算法通关指南数据结构和算法篇(2)--- 链表专题》
c语言·数据结构·c++·算法·链表·学习方法·visual studio
万物挽挽3 小时前
数据结构概述
数据结构
wangwangmoon_light3 小时前
1.10 数据结构之图
数据结构
艾莉丝努力练剑3 小时前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
醉颜凉3 小时前
环形房屋如何 “安全劫舍”?动态规划解题逻辑与技巧
c语言·算法·动态规划
mjhcsp3 小时前
C++ 动态规划(Dynamic Programming)详解:从理论到实战
c++·动态规划·1024程序员节
大雨淅淅3 小时前
一文搞懂动态规划:从入门到精通
算法·动态规划
不去幼儿园3 小时前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
随意起个昵称3 小时前
【二分】洛谷P2920,P2985做题小记
c++·算法