力扣---最长公共子序列---二维动态规划

思想:

  1. 定义g[i][j]:text1的前i位和text2的前j位的最长公共子序列长度。
  2. 递推公式:如果text[i]==text[j],那么只需要看g[i-1][j-1]即可,此时g[i][j]=g[i-1][j-1]+1。如果text[i]!=text[j],那么g[i][j]=max(g[i-1][j],g[i][j-1],g[i-1][j-1])
  3. 数组初始化:由g[i-1][j],g[i][j-1],g[i-1][j-1]推及g[i][j],即由左上角向右下角推(两层for循环都是从小到大遍历,推荐博客:力扣---最长回文子串---二维动态规划-CSDN博客(考察for循环遍历顺序)),需要初始化第0行和第0列。

代码:

C++:

cpp 复制代码
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int len1=text1.size();
        int len2=text2.size();
        vector<vector<int>> g(len1,vector<int>(len2,0));
        //g[0][0]
        if(text1[0]==text2[0]){g[0][0]=1;}
        else{
            g[0][0]=0;
        }
        //g[0][i]+g[i][0]
        for(int i=1;i<len2;i++){
            if(text1[0]==text2[i]){g[0][i]=1;}
            else{
                g[0][i]=g[0][i-1];
            }
        }
        //cout<<"***"<<endl;
        for(int i=1;i<len1;i++){
            if(text1[i]==text2[0]){g[i][0]=1;}
            else{
                g[i][0]=g[i-1][0];
            }
        }

        for(int i=1;i<len1;i++){
            for(int j=1;j<len2;j++){
                if(text1[i]==text2[j]){
                    g[i][j]=g[i-1][j-1]+1;
                }
                else{
                    g[i][j]=max(g[i-1][j],g[i][j-1]);
                    g[i][j]=max(g[i][j],g[i-1][j-1]);
                }
            }
        }
        return g[len1-1][len2-1];
    }
};

Python:

python 复制代码
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        len1=len(text1)
        len2=len(text2)
        g=[[0 for _ in range(len2)] for _ in range(len1)]
        if text1[0]==text2[0]:
            g[0][0]=1
        else:
            g[0][0]=0
        
        for i in range(1,len2):
            if text1[0]==text2[i]:
                g[0][i]=1
            else:
                g[0][i]=g[0][i-1]
        
        for i in range(1,len1):
            if text1[i]==text2[0]:
                g[i][0]=1
            else:
                g[i][0]=g[i-1][0]
        
        for i in range(1,len1):
            for j in range(1,len2):
                if text1[i]==text2[j]:
                    g[i][j]=g[i-1][j-1]+1
                else:
                    g[i][j]=max(g[i-1][j],g[i][j-1])
                    g[i][j]=max(g[i][j],g[i-1][j-1])
        return g[len1-1][len2-1]
相关推荐
✿ ༺ ོIT技术༻4 分钟前
剑指offer第2版:链表系列
数据结构·算法·链表
yiridancan28 分钟前
终极剖析HashMap:数据结构、哈希冲突与解决方案全解
java·数据结构·算法·哈希算法
满分观察网友z30 分钟前
性能优化大作战:从 O(N*M) 到 O(N),我的哈希表奇遇记(1865. 找出和为指定值的下标对)
算法
点云SLAM2 小时前
二叉树算法详解和C++代码示例
数据结构·c++·算法·红黑树·二叉树算法
今天背单词了吗98010 小时前
算法学习笔记:19.牛顿迭代法——从原理到实战,涵盖 LeetCode 与考研 408 例题
笔记·学习·算法·牛顿迭代法
没书读了10 小时前
考研复习-数据结构-第六章-图
数据结构
天真小巫10 小时前
2025.7.13总结
职场和发展
jdlxx_dongfangxing10 小时前
进制转换算法详解及应用
算法
why技术11 小时前
也是出息了,业务代码里面也用上算法了。
java·后端·算法
future141212 小时前
C#进阶学习日记
数据结构·学习