R语言数据分析基础(二)

R语言和Python的pandas库都用于数据处理和分析,但它们在语法和功能上有所不同。R语言主要用于统计计算和图形生成,而pandas则专注于数据处理和分析。

以下是一些R语言中实现pandas相似操作的方法:

  1. 数据框(Data Frame) :

    R语言中的数据框(data frame)类似于pandas中的DataFrame,可以存储不同类型的数据。你可以使用data.frame()函数来创建数据框。

    r 复制代码
    # 创建一个数据框
    df <- data.frame(
      A = 1:5,
      B = c("a", "b", "c", "d", "e"),
      C = c(TRUE, FALSE, TRUE, FALSE, TRUE)
    )
  2. 数据读取 :

    R语言中有多种函数可以读取数据,例如read.csv(), read.table(), read_excel()(来自readxl包)等。

    r 复制代码
    # 读取CSV文件
    data <- read.csv("data.csv")
  3. 数据选择和过滤 :

    R语言中可以使用$符号来选择数据框中的列,或者使用subset()函数来过滤数据。

    r 复制代码
    # 选择数据框中的列
    column_A <- df$A
    
    # 过滤数据
    filtered_data <- subset(df, A > 3)
  4. 数据汇总 :

    R语言中有多种函数可以进行数据汇总,例如aggregate(), tapply()等。

    r 复制代码
    # 按列B进行汇总
    summary <- aggregate(A ~ B, data = df, FUN = mean)
  5. 数据可视化 :

    R语言中有许多用于数据可视化的包,如ggplot2, lattice, plotly等。

    r 复制代码
    # 使用ggplot2包进行数据可视化
    library(ggplot2)
    ggplot(df, aes(x = A, y = B)) +
      geom_point()
  6. 数据处理 :

    R语言中有许多用于数据处理的函数,如apply(), lapply(), sapply()等。

    r 复制代码
    # 对数据框的每一列应用函数
    result <- lapply(df, function(x) mean(x, na.rm = TRUE))
相关推荐
A***07171 小时前
React数据可视化应用
前端·react.js·信息可视化
二川bro4 小时前
数据可视化进阶:Python动态图表制作实战
开发语言·python·信息可视化
学术小白人5 小时前
会议第一轮投稿!2026年物联网、数据科学与先进计算国际学术会议(IDSAC2026)
人工智能·物联网·数据分析·能源·制造·教育·rdlink研发家
X***E46312 小时前
前端数据分析应用
前端·数据挖掘·数据分析
毕设源码-邱学长13 小时前
【开题答辩全过程】以 海鲜市场销售数据分析与预测系统为例,包含答辩的问题和答案
数据挖掘·数据分析
q***25120 小时前
Python中的简单爬虫
爬虫·python·信息可视化
最晚的py20 小时前
Python Matplotlib
python·数据分析
麦烤楽鸡翅1 天前
简单迭代法求单根的近似值
java·c++·python·数据分析·c·数值分析
咚咚王者1 天前
人工智能之数据分析 numpy:第十五章 项目实践
人工智能·数据分析·numpy