R语言数据分析基础(二)

R语言和Python的pandas库都用于数据处理和分析,但它们在语法和功能上有所不同。R语言主要用于统计计算和图形生成,而pandas则专注于数据处理和分析。

以下是一些R语言中实现pandas相似操作的方法:

  1. 数据框(Data Frame) :

    R语言中的数据框(data frame)类似于pandas中的DataFrame,可以存储不同类型的数据。你可以使用data.frame()函数来创建数据框。

    r 复制代码
    # 创建一个数据框
    df <- data.frame(
      A = 1:5,
      B = c("a", "b", "c", "d", "e"),
      C = c(TRUE, FALSE, TRUE, FALSE, TRUE)
    )
  2. 数据读取 :

    R语言中有多种函数可以读取数据,例如read.csv(), read.table(), read_excel()(来自readxl包)等。

    r 复制代码
    # 读取CSV文件
    data <- read.csv("data.csv")
  3. 数据选择和过滤 :

    R语言中可以使用$符号来选择数据框中的列,或者使用subset()函数来过滤数据。

    r 复制代码
    # 选择数据框中的列
    column_A <- df$A
    
    # 过滤数据
    filtered_data <- subset(df, A > 3)
  4. 数据汇总 :

    R语言中有多种函数可以进行数据汇总,例如aggregate(), tapply()等。

    r 复制代码
    # 按列B进行汇总
    summary <- aggregate(A ~ B, data = df, FUN = mean)
  5. 数据可视化 :

    R语言中有许多用于数据可视化的包,如ggplot2, lattice, plotly等。

    r 复制代码
    # 使用ggplot2包进行数据可视化
    library(ggplot2)
    ggplot(df, aes(x = A, y = B)) +
      geom_point()
  6. 数据处理 :

    R语言中有许多用于数据处理的函数,如apply(), lapply(), sapply()等。

    r 复制代码
    # 对数据框的每一列应用函数
    result <- lapply(df, function(x) mean(x, na.rm = TRUE))
相关推荐
wang_yb13 小时前
打破堆积困局:优化堆积条形图的对比效果
数据分析·databook
实战项目14 小时前
大数据分析XX未来五年的房价走势
数据挖掘·数据分析
GIS之路17 小时前
ArcGIS Pro 实现影像波段合成
前端·python·信息可视化
叫我:松哥18 小时前
基于Flask框架开发的二手房数据分析与推荐管理平台,集成大数据分析、机器学习预测和智能推荐技术
大数据·python·深度学习·机器学习·数据分析·flask
YangYang9YangYan18 小时前
2026高职计算机专业学习数据分析指南
学习·数据挖掘·数据分析
a***592619 小时前
MySQL数据可视化实战技巧
数据库·mysql·信息可视化
Ulyanov20 小时前
PyVista与Tkinter桌面级3D可视化应用实战
开发语言·前端·python·3d·信息可视化·tkinter·gui开发
GIS之路20 小时前
ArcGIS Pro 添加底图的方式
前端·数据库·python·arcgis·信息可视化
weixin_4624462321 小时前
【原创实践】在 CentOS 上安装 JupyterHub 并配置 R 语言支持 Kernel
linux·r语言·centos
w***76551 天前
MySQL数据可视化实战:从查询到图表
信息可视化