R语言数据分析基础(二)

R语言和Python的pandas库都用于数据处理和分析,但它们在语法和功能上有所不同。R语言主要用于统计计算和图形生成,而pandas则专注于数据处理和分析。

以下是一些R语言中实现pandas相似操作的方法:

  1. 数据框(Data Frame) :

    R语言中的数据框(data frame)类似于pandas中的DataFrame,可以存储不同类型的数据。你可以使用data.frame()函数来创建数据框。

    r 复制代码
    # 创建一个数据框
    df <- data.frame(
      A = 1:5,
      B = c("a", "b", "c", "d", "e"),
      C = c(TRUE, FALSE, TRUE, FALSE, TRUE)
    )
  2. 数据读取 :

    R语言中有多种函数可以读取数据,例如read.csv(), read.table(), read_excel()(来自readxl包)等。

    r 复制代码
    # 读取CSV文件
    data <- read.csv("data.csv")
  3. 数据选择和过滤 :

    R语言中可以使用$符号来选择数据框中的列,或者使用subset()函数来过滤数据。

    r 复制代码
    # 选择数据框中的列
    column_A <- df$A
    
    # 过滤数据
    filtered_data <- subset(df, A > 3)
  4. 数据汇总 :

    R语言中有多种函数可以进行数据汇总,例如aggregate(), tapply()等。

    r 复制代码
    # 按列B进行汇总
    summary <- aggregate(A ~ B, data = df, FUN = mean)
  5. 数据可视化 :

    R语言中有许多用于数据可视化的包,如ggplot2, lattice, plotly等。

    r 复制代码
    # 使用ggplot2包进行数据可视化
    library(ggplot2)
    ggplot(df, aes(x = A, y = B)) +
      geom_point()
  6. 数据处理 :

    R语言中有许多用于数据处理的函数,如apply(), lapply(), sapply()等。

    r 复制代码
    # 对数据框的每一列应用函数
    result <- lapply(df, function(x) mean(x, na.rm = TRUE))
相关推荐
ywyy67981 天前
制造业GEO系统开发:经销商区域管控、防串货与渠道赋能功能实现
信息可视化·制造业·geo优化·geo系统开发·geo系统·geo优化系统开发·geo优化系统
ClkLog-开源埋点用户分析1 天前
【埋点分析系统】初次选型的实用指南(附开源解决方案)
数据分析·开源·开源软件·用户画像·埋点分析
电商API_180079052471 天前
淘宝商品视频提取API全解析:从授权到落地实战
爬虫·python·信息可视化·数据分析·音视频
没有梦想的咸鱼185-1037-16631 天前
面向自然科学的人工智能建模方法【涵盖机器学习与深度学习的核心方法(如随机森林、XGBoost、CNN、LSTM、Transformer等)】
人工智能·深度学习·随机森林·机器学习·数据分析·卷积神经网络·transformer
十三画者2 天前
【文献分享】PepQueryMHC:基于免疫肽组学数据实现肿瘤抗原的快速全面筛选
数据挖掘·数据分析
DX_水位流量监测2 天前
地埋式积水监测仪:城市防涝的智能感知核心
大数据·网络·人工智能·数据分析·自动化
TM1Club2 天前
Zoey的TM1聊天室|#3 合并报表提速:业财一体如何实现关联方对账自动化
大数据·开发语言·人工智能·经验分享·数据分析·自动化·数据库系统
yousuotu2 天前
基于Python实现亚马逊销售数据分析与预测
开发语言·python·数据分析
超自然祈祷2 天前
从数据挖掘到人工智能的脉络地图
人工智能·机器学习·数据挖掘·数据分析
工业互联网专业2 天前
国内python职位数据分析_flask+spider
python·数据分析·flask·毕业设计·源码·课程设计·spider