R语言数据分析基础(二)

R语言和Python的pandas库都用于数据处理和分析,但它们在语法和功能上有所不同。R语言主要用于统计计算和图形生成,而pandas则专注于数据处理和分析。

以下是一些R语言中实现pandas相似操作的方法:

  1. 数据框(Data Frame) :

    R语言中的数据框(data frame)类似于pandas中的DataFrame,可以存储不同类型的数据。你可以使用data.frame()函数来创建数据框。

    r 复制代码
    # 创建一个数据框
    df <- data.frame(
      A = 1:5,
      B = c("a", "b", "c", "d", "e"),
      C = c(TRUE, FALSE, TRUE, FALSE, TRUE)
    )
  2. 数据读取 :

    R语言中有多种函数可以读取数据,例如read.csv(), read.table(), read_excel()(来自readxl包)等。

    r 复制代码
    # 读取CSV文件
    data <- read.csv("data.csv")
  3. 数据选择和过滤 :

    R语言中可以使用$符号来选择数据框中的列,或者使用subset()函数来过滤数据。

    r 复制代码
    # 选择数据框中的列
    column_A <- df$A
    
    # 过滤数据
    filtered_data <- subset(df, A > 3)
  4. 数据汇总 :

    R语言中有多种函数可以进行数据汇总,例如aggregate(), tapply()等。

    r 复制代码
    # 按列B进行汇总
    summary <- aggregate(A ~ B, data = df, FUN = mean)
  5. 数据可视化 :

    R语言中有许多用于数据可视化的包,如ggplot2, lattice, plotly等。

    r 复制代码
    # 使用ggplot2包进行数据可视化
    library(ggplot2)
    ggplot(df, aes(x = A, y = B)) +
      geom_point()
  6. 数据处理 :

    R语言中有许多用于数据处理的函数,如apply(), lapply(), sapply()等。

    r 复制代码
    # 对数据框的每一列应用函数
    result <- lapply(df, function(x) mean(x, na.rm = TRUE))
相关推荐
Leo.yuan25 分钟前
制造业五大模式解析:OEM、ODM、OBM、JDM、CMT
大数据·数据库·信息可视化
CodeCraft Studio37 分钟前
【电子行业案例】借助LightningChart 实现高精密电子制造数据实时可视化
信息可视化·数据分析·制造·lightningchart·电子制造·制造数据可视化·高性能图表库
-To be number.wan1 小时前
为什么 pyecharts 在 Jupyter Notebook 里显示空白?
ide·python·jupyter·数据分析
BYSJMG1 小时前
大数据分析案例:基于大数据的肺癌数据分析与可视化系统
java·大数据·vue.js·python·mysql·数据分析·课程设计
Highcharts.js1 小时前
用 Highcharts如何创建一个音频图表
javascript·信息可视化·音视频·highcharts·音频图表
renhongxia113 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
Aloudata15 小时前
数据工程视角:指标平台选型深度对比(BI 指标中心 vs 传统 vs Headless vs 自动化平台)
数据分析·自动化·数据治理·指标平台·noetl
BYSJMG16 小时前
计算机毕业设计选题推荐:基于大数据的肥胖风险分析与可视化系统详解
大数据·vue.js·数据挖掘·数据分析·课程设计
Leo.yuan17 小时前
经营分析会,该讲些什么?
大数据·数据库·数据分析
java1234_小锋17 小时前
分享一套优质的基于Python的房屋数据分析预测系统(scikit-learn机器学习+Flask)
python·数据分析·scikit-learn