R语言数据分析基础(二)

R语言和Python的pandas库都用于数据处理和分析,但它们在语法和功能上有所不同。R语言主要用于统计计算和图形生成,而pandas则专注于数据处理和分析。

以下是一些R语言中实现pandas相似操作的方法:

  1. 数据框(Data Frame) :

    R语言中的数据框(data frame)类似于pandas中的DataFrame,可以存储不同类型的数据。你可以使用data.frame()函数来创建数据框。

    r 复制代码
    # 创建一个数据框
    df <- data.frame(
      A = 1:5,
      B = c("a", "b", "c", "d", "e"),
      C = c(TRUE, FALSE, TRUE, FALSE, TRUE)
    )
  2. 数据读取 :

    R语言中有多种函数可以读取数据,例如read.csv(), read.table(), read_excel()(来自readxl包)等。

    r 复制代码
    # 读取CSV文件
    data <- read.csv("data.csv")
  3. 数据选择和过滤 :

    R语言中可以使用$符号来选择数据框中的列,或者使用subset()函数来过滤数据。

    r 复制代码
    # 选择数据框中的列
    column_A <- df$A
    
    # 过滤数据
    filtered_data <- subset(df, A > 3)
  4. 数据汇总 :

    R语言中有多种函数可以进行数据汇总,例如aggregate(), tapply()等。

    r 复制代码
    # 按列B进行汇总
    summary <- aggregate(A ~ B, data = df, FUN = mean)
  5. 数据可视化 :

    R语言中有许多用于数据可视化的包,如ggplot2, lattice, plotly等。

    r 复制代码
    # 使用ggplot2包进行数据可视化
    library(ggplot2)
    ggplot(df, aes(x = A, y = B)) +
      geom_point()
  6. 数据处理 :

    R语言中有许多用于数据处理的函数,如apply(), lapply(), sapply()等。

    r 复制代码
    # 对数据框的每一列应用函数
    result <- lapply(df, function(x) mean(x, na.rm = TRUE))
相关推荐
zqzgng2 小时前
Python 数据可视化pilot
开发语言·python·信息可视化
天桥下的卖艺者2 小时前
R语言对列线图评分进行危险分层
r语言·列线图·风险分层
Leo.yuan15 小时前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
CodeCraft Studio18 小时前
【实用教程】使用思维导图增强 JavaScript甘特图项目工作流程的可见性
javascript·信息可视化·甘特图
海边散步的蜗牛20 小时前
学术论文写作丨机器学习与深度学习
人工智能·深度学习·机器学习·chatgpt·数据分析·ai写作
数模竞赛Paid answer1 天前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup
亚图跨际1 天前
MATLAB和R及Python伪时间分析
python·matlab·r语言·伪时间分析
康谋自动驾驶1 天前
康谋分享 | 确保AD/ADAS系统的安全:避免数据泛滥的关键
数据分析·自动驾驶·汽车
布说在见1 天前
Python 绘图工具详解:使用 Matplotlib、Seaborn 和 Pyecharts 绘制散点图
信息可视化
NiNg_1_2341 天前
ECharts实现数据可视化入门详解
前端·信息可视化·echarts