【opencv】教程代码 —features2D(5)旋转相机的基本全景拼接

基本全景拼接

panorama_stitching_rotating_camera.cpp 将第二张图像进行透视变换后与第一张图像拼接

cpp 复制代码
#include <iostream>  // 包含了一些用于输入输出的函数
#include <opencv2/core.hpp>  // 包含了OpenCV核心库的一些常用类和函数
#include <opencv2/imgproc.hpp>  // 包含了图像处理的一些类和函数,如图像直方图、滤波、颜色变换等
#include <opencv2/highgui.hpp>  // 包含了GUI绘制函数和一些文件输入输出函数与图片展示函数。


using namespace std;  // 使用标准库命名空间
using namespace cv;  // 使用OpenCV库命名空间


namespace  // 匿名命名空间
{
void basicPanoramaStitching(const string &img1Path, const string &img2Path)  // 定义一个基本全景图拼接的函数
{
    Mat img1 = imread( samples::findFile( img1Path ) );  // 读取第一张图片,并进行文件路径查找
    Mat img2 = imread( samples::findFile( img2Path ) );  // 读取第二张图片,并进行文件路径查找


    // 定义第一张图片的摄像头位置信息
    Mat c1Mo = (Mat_<double>(4,4) << 0.9659258723258972, 0.2588190734386444, 0.0, 1.5529145002365112,
                                     0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,
                                     -0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,
                                     0, 0, 0, 1);


    // 定义第二张图片的摄像头位置信息
    Mat c2Mo = (Mat_<double>(4,4) << 0.9659258723258972, -0.2588190734386444, 0.0, -1.5529145002365112,
                                     -0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,
                                     0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,
                                     0, 0, 0, 1);


    // 定义相机的内参信息
    Mat cameraMatrix = (Mat_<double>(3,3) << 700.0, 0.0, 320.0,
                                             0.0, 700.0, 240.0,
                                             0, 0, 1);


    // 提取旋转矩阵
    Mat R1 = c1Mo(Range(0,3), Range(0,3));
    Mat R2 = c2Mo(Range(0,3), Range(0,3));


    // 计算旋转位移
    Mat R_2to1 = R1*R2.t();


    // 计算单应性矩阵
    Mat H = cameraMatrix * R_2to1 * cameraMatrix.inv();
    H /= H.at<double>(2,2);
    cout << "H:\n" << H << endl;


    // 进行全景图像拼接
    Mat img_stitch;
    warpPerspective(img2, img_stitch, H, Size(img2.cols*2, img2.rows));
    imshow("warp_image2", img_stitch);// 中间输出
    Mat half = img_stitch(Rect(0, 0, img1.cols, img1.rows));
    img1.copyTo(half);


    // 显示经过拼接的全景图像和原图对比
    Mat img_compare;
    Mat img_space = Mat::zeros(Size(50, img1.rows), CV_8UC3);
    hconcat(img1, img_space, img_compare);
    hconcat(img_compare, img2, img_compare);
    imshow("Compare images", img_compare);


    imshow("Panorama stitching", img_stitch);  // 显示拼接的全景图
    waitKey();  // 等待用户响应
}


// 参数描述信息
const char* params
    = "{ help h   |                      | print usage }"
      "{ image1   | Blender_Suzanne1.jpg | path to the first Blender image }"
      "{ image2   | Blender_Suzanne2.jpg | path to the second Blender image }";
}


int main(int argc, char *argv[])  // 主函数,程序从此处开始运行
{
    CommandLineParser parser(argc, argv, params);  // 命令行参数解析器


    if (parser.has("help"))  // 如果有输入'help'参数
    {
        parser.about( "Code for homography tutorial.\n"
                      "Example 5: basic panorama stitching from a rotating camera.\n" );  // 显示关于该程序的简介
        parser.printMessage();  // 打印所有参数的说明
        return 0;  // 程序正常退出
    }


    basicPanoramaStitching(parser.get<String>("image1"), parser.get<String>("image2"));  // 运行全景图像拼接函数


    return 0;  // 程序正常退出
}

这段代码是使用OpenCV来实现全景图像拼接的一个基础示例,通过计算两张來自同一旋转摄像头拍摄的图像的单应性矩阵,然后将第二张图像进行透视变换后与第一张图像拼接,得到一张全景图。

相关推荐
OpenAnolis小助手11 小时前
直播预告:LLM for AIOPS,是泡沫还是银弹? |《AI 进化论》第六期
人工智能
我一身正气怎能输11 小时前
游戏大厂A*寻路优化秘籍:流畅不卡顿
人工智能·游戏
johnny23312 小时前
AI工作流编排平台
人工智能
百***354813 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
合方圆~小文13 小时前
AI摄像头精准识别技术依赖于深度算法
数据结构·数据库·数码相机·模块测试
Qzkj66613 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...13 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手13 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式14 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元14 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能