【Anaconda】Linux下Anaconda安装和虚拟环境配置

Linux下Anaconda安装和虚拟环境配置

下面介绍整体流程,遇到问题优先看"遇到问题章节"!

一、安装anaconda

1.下载anaconda安装包

(1)可以选择在官网下载,然后上传到服务器:

清华镜像的网址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

(2)也可以直接在linux上下载:

复制你所要版本的下载链接,使用wget+链接下载!

python 复制代码
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.11-Linux-x86_64.sh

2.开始安装

进入存放安装包的目录下,赋予它可执行权限,执行!

python 复制代码
# 给文件执行权限
chmod 777 Anaconda3-2024.02-1-Linux-x86_64.sh

# 执行
./Anaconda3-2024.02-1-Linux-x86_64.sh

遇到提示,输入enter,回车继续:

接下来是协议之类的阅读文章,按↓下键或者S键,直到出现yes/no,输入yes

接下来提示安装位置,默认是/root/anaconda3,如果需要改位置,则输入路径即可!不改的话直接回车:

然后提示你是否初始化,选择yes,在>>>输入yes,等待一会:

之后,重启终端,anaconda才能生效。命令行前方出现(base)字样。

注意:

anaconda在linux下默认安装在文件夹./anaconda3

,如果安装过程中出现任何问题,删除anaconda3文件夹即可重新开始: rm -rf [dir]

二、conda虚拟环境管理

  1. 查看虚拟环境列表

    使用 conda info -e或者conda env list 查看已经存在的环境,前方带有*的为正在使用的虚拟环境。

  2. 创建虚拟环境
    conda create -n [环境名称] python=[版本号]

    python 复制代码
    conda create -n mypython python=3.11
  3. 激活或退出虚拟环境

    • 激活虚拟环境:conda activate [环境名称]
    • 退出虚拟环境:conda deactivate [环境名称]
  4. 删除或复制虚拟环境

    • 复制环境:conda create -n [new环境名称] --clone [old环境名称]
    • 删除虚拟环境:conda remove -n [环境名称] --all
python 复制代码
# 复制环境
conda create -n newpythonenv --clone oldpythonenv

# 删除环境
conda remove -n mypythonenv --all
  1. 对于虚拟环境的包管理命令整理:
  • 查看虚拟环境下的包:conda list -n [环境]或者切换环境后conda list

  • 安装第三方包:切换到使用的环境后,安装第三方库:

    • 安装:conda install [包名=版本号]
    • 删除:conda uninstall [包名]
    • 更新:conda update [包名]
  • 复制环境依赖 (例如在开源项目中常见)
    一般是在复现相同环境时使用,一键重现相同环境。例如更换服务器、复现git开源工程等。
    (1)conda

    conda导出已有的环境,保存在myenv.yaml文件中。

    python 复制代码
    conda env export > myenv.yaml

    根据yaml文件导入并安装环境

    python 复制代码
    conda env create -f myenv.yaml

    注:.yaml文件移植过来的环境只是原来环境里用conda install命令安装的包,pip安装的库可能不会移植过来,需要重新安装。

    (2)pip

    把环境中的依赖写入 requirement.txt 中

    python 复制代码
    pip freeze >requirements.txt

    安装环境依赖

    python 复制代码
    pip install -r requirement.txt

三、jupyter相关启动部署

本地启动jupyter:

一般anaconda会自带这些工具不用下载!

  • 安装命令 conda install jupyterlab
  • 启动:jupyter notebook或者jupyter lab

远程访问jupyter:

参考另一篇文章:【AI模型-机器学习工具部署】远程服务器配置Jupyter notebook或jupyter lab服务

四、遇到问题

问题1:遇到"--no-check-certificate"
解决方法:加入--no-check-certificate 即可,如:

python 复制代码
wget --no-check-certificate https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.11-Linux-x86_64.sh
sh Anaconda3-2021.11-Linux-x86_64.sh

问题2/ home空间不足,特别是当后续还要安装众多的库,会频繁提示no space

解决方法:安装Miniconda,占用空间要比Anaconda3小很多,大概有3GB。

python 复制代码
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

问题3:PackagesNotFoundError: The following packages are not available from current channels:

需要用到的soundfile等一些第三方库提示无法获取获取。

解决方法:可以通过国内资源下载:

python 复制代码
pip install soundfile -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com 

问题4:NotImplementedError: Cannot convert a symbolic Tensor (lstm/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported

提示tensor和numpy不兼容的问题。

解决方法:可能是numpy包的问题。减低版本 numpy == 1.18.5

相关推荐
瓦力wow1 小时前
python 绘制3D平面图
开发语言·python·3d·matplotlib
charlie1145141912 小时前
Linux内核深入学习(4)——内核常见的数据结构之链表
linux·数据结构·学习·链表·内核
Yu_Mao_Cat2 小时前
数独求解器3.0 增加latex格式读取
开发语言·python·算法
豆约翰2 小时前
c#和python互操作实现排序算法可视化
python·c#·排序算法
L汐2 小时前
05 部署Nginx反向代理
运维·nginx·github
南方以南_2 小时前
CentOS相关操作hub(更新中)
linux·运维·centos
inksci3 小时前
Python web 开发 Flask HTTP 服务
python·flask
Clownseven3 小时前
[安全清单] Linux 服务器安全基线:一份可以照着做的加固 Checklist
linux·服务器·安全
熊猫在哪4 小时前
野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(一)conda环境搭建
linux·人工智能·python·嵌入式硬件·神经网络·机器学习·边缘计算
斯普润布特4 小时前
Centos系统资源镜像配置
linux·运维·centos