【解决Jetson Nano 内存不足问题】纯命令行将 Conda 环境迁移到 SD 卡

前言

Jetson Nano 板载只有 16GB 的存储空间,在安装完 Ubuntu 和 Conda 环境后,剩余空间就捉襟见肘了,无法满足安装 PyTorch 等大型包的需求。此时如果你有一张SD卡,那么可以考虑将 Conda 环境迁移到 SD 卡上。

但网上的教程基本都是选择将操作系统迁移到SD卡以扩展存储,但这往往会带来性能下降的问题。其实可以只改Conda的安装目录实现一样的效果(因为主要的内存都是Conda环境占用):将Conda环境默认安装在SD卡上,而无需迁移整个操作系统。这种方法不仅有效利用了额外的存储空间,而且保持了系统的性能。

于是就有了这个教程😁

1. 准备工作

在开始之前,请确保你的Jetson Nano已经安装了Conda环境管理器。如果没有的话可以通过以下命令安装:

bash 复制代码
sudo apt update
sudo apt install conda

或者直接去anaconda官网下载(我是下的mambaforge,可以认为是一个小型的anaconda)

2. 创建新的Conda环境目录

首先,我们需要在SD卡上创建一个新的目录,用于存放Conda环境和包。假设你的SD卡已经挂载在/home目录下,可以使用以下命令创建环境目录:

bash 复制代码
mkdir /home/conda_envs

3. (💥最关键的一步💥)配置Conda环境变量

为了告诉Conda使用新创建的目录作为环境和包的存储位置,需要设置CONDA_ENVS_DIRS环境变量。咱们可以在你的shell配置文件中(如.bashrc.zshrc)添加以下行:

bash 复制代码
export CONDA_ENVS_DIRS="/home/conda_envs"

保存更改后,运行以下命令使配置生效:

bash 复制代码
source ~/.bashrc

4. 创建新的Conda环境

然后我们就可以使用Conda命令创建一个新的环境,它将默认存储在CONDA_ENVS_DIRS指定的目录中:

bash 复制代码
conda create --name my_new_env python=3.8

这里的my_new_env是新环境的名称,python=3.8指定的是Python的版本。

5. 激活新的Conda环境

使用以下命令激活你的新环境:

bash 复制代码
conda activate my_new_env

6. 安装包

在激活的环境中,你现在可以安装所需的包,它们将被存储在SD卡上:

bash 复制代码
conda install numpy pandas

7. 验证环境位置

为了确认环境和包确实被安装在了SD卡上,我们可以使用以下命令查看环境目录:

bash 复制代码
conda env list

这将列出所有环境及其对应的路径。确保你的新环境my_new_env的路径指向了/home/conda_envs

至此,我们就成功的把Conda环境改成默认装在SD卡上了

OVER👻

相关推荐
jerry-8933 分钟前
系统安全及应用
linux·运维·服务器
点云SLAM35 分钟前
CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
深度学习·计算机视觉·人脸识别·3d人脸·头像重建
涛涛讲AI1 小时前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区1 小时前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
AiFlutter1 小时前
在AlarmLinux系统中安装KeyDB
linux·运维·服务器
herosunly1 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝1 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
笔触狂放1 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH221 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习