【解决Jetson Nano 内存不足问题】纯命令行将 Conda 环境迁移到 SD 卡

前言

Jetson Nano 板载只有 16GB 的存储空间,在安装完 Ubuntu 和 Conda 环境后,剩余空间就捉襟见肘了,无法满足安装 PyTorch 等大型包的需求。此时如果你有一张SD卡,那么可以考虑将 Conda 环境迁移到 SD 卡上。

但网上的教程基本都是选择将操作系统迁移到SD卡以扩展存储,但这往往会带来性能下降的问题。其实可以只改Conda的安装目录实现一样的效果(因为主要的内存都是Conda环境占用):将Conda环境默认安装在SD卡上,而无需迁移整个操作系统。这种方法不仅有效利用了额外的存储空间,而且保持了系统的性能。

于是就有了这个教程😁

1. 准备工作

在开始之前,请确保你的Jetson Nano已经安装了Conda环境管理器。如果没有的话可以通过以下命令安装:

bash 复制代码
sudo apt update
sudo apt install conda

或者直接去anaconda官网下载(我是下的mambaforge,可以认为是一个小型的anaconda)

2. 创建新的Conda环境目录

首先,我们需要在SD卡上创建一个新的目录,用于存放Conda环境和包。假设你的SD卡已经挂载在/home目录下,可以使用以下命令创建环境目录:

bash 复制代码
mkdir /home/conda_envs

3. (💥最关键的一步💥)配置Conda环境变量

为了告诉Conda使用新创建的目录作为环境和包的存储位置,需要设置CONDA_ENVS_DIRS环境变量。咱们可以在你的shell配置文件中(如.bashrc.zshrc)添加以下行:

bash 复制代码
export CONDA_ENVS_DIRS="/home/conda_envs"

保存更改后,运行以下命令使配置生效:

bash 复制代码
source ~/.bashrc

4. 创建新的Conda环境

然后我们就可以使用Conda命令创建一个新的环境,它将默认存储在CONDA_ENVS_DIRS指定的目录中:

bash 复制代码
conda create --name my_new_env python=3.8

这里的my_new_env是新环境的名称,python=3.8指定的是Python的版本。

5. 激活新的Conda环境

使用以下命令激活你的新环境:

bash 复制代码
conda activate my_new_env

6. 安装包

在激活的环境中,你现在可以安装所需的包,它们将被存储在SD卡上:

bash 复制代码
conda install numpy pandas

7. 验证环境位置

为了确认环境和包确实被安装在了SD卡上,我们可以使用以下命令查看环境目录:

bash 复制代码
conda env list

这将列出所有环境及其对应的路径。确保你的新环境my_new_env的路径指向了/home/conda_envs

至此,我们就成功的把Conda环境改成默认装在SD卡上了

OVER👻

相关推荐
不做无法实现的梦~4 分钟前
适合新手小白入门实现slam建图和路径规划的详细教程
人工智能·机器人·自动驾驶
热爱编程的小白白13 分钟前
IPIDEA海外代理助力-Youtube视频AI领域选题数据获取实践
人工智能·音视频
高洁0128 分钟前
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现(3)
人工智能·python·深度学习·神经网络·transformer
小狗爱吃黄桃罐头1 小时前
正点原子【第四期】Linux之驱动开发学习笔记-10.1 Linux 内核定时器实验
linux·驱动开发·学习
apocalypsx1 小时前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn
leafff1232 小时前
一文了解LLM应用架构:从Prompt到Multi-Agent
人工智能·架构·prompt
Kang强2 小时前
tcpdump 抓到 icmp 包,但是抓不到 tcp 包??
linux
demodashi6662 小时前
Linux下ag搜索命令详解
linux·运维·windows
一个数据大开发2 小时前
【零基础一站式指南】Conda 学习环境准备与 Jupyter/PyCharm 完全配置
学习·jupyter·conda
无风听海2 小时前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络