【解决Jetson Nano 内存不足问题】纯命令行将 Conda 环境迁移到 SD 卡

前言

Jetson Nano 板载只有 16GB 的存储空间,在安装完 Ubuntu 和 Conda 环境后,剩余空间就捉襟见肘了,无法满足安装 PyTorch 等大型包的需求。此时如果你有一张SD卡,那么可以考虑将 Conda 环境迁移到 SD 卡上。

但网上的教程基本都是选择将操作系统迁移到SD卡以扩展存储,但这往往会带来性能下降的问题。其实可以只改Conda的安装目录实现一样的效果(因为主要的内存都是Conda环境占用):将Conda环境默认安装在SD卡上,而无需迁移整个操作系统。这种方法不仅有效利用了额外的存储空间,而且保持了系统的性能。

于是就有了这个教程😁

1. 准备工作

在开始之前,请确保你的Jetson Nano已经安装了Conda环境管理器。如果没有的话可以通过以下命令安装:

bash 复制代码
sudo apt update
sudo apt install conda

或者直接去anaconda官网下载(我是下的mambaforge,可以认为是一个小型的anaconda)

2. 创建新的Conda环境目录

首先,我们需要在SD卡上创建一个新的目录,用于存放Conda环境和包。假设你的SD卡已经挂载在/home目录下,可以使用以下命令创建环境目录:

bash 复制代码
mkdir /home/conda_envs

3. (💥最关键的一步💥)配置Conda环境变量

为了告诉Conda使用新创建的目录作为环境和包的存储位置,需要设置CONDA_ENVS_DIRS环境变量。咱们可以在你的shell配置文件中(如.bashrc.zshrc)添加以下行:

bash 复制代码
export CONDA_ENVS_DIRS="/home/conda_envs"

保存更改后,运行以下命令使配置生效:

bash 复制代码
source ~/.bashrc

4. 创建新的Conda环境

然后我们就可以使用Conda命令创建一个新的环境,它将默认存储在CONDA_ENVS_DIRS指定的目录中:

bash 复制代码
conda create --name my_new_env python=3.8

这里的my_new_env是新环境的名称,python=3.8指定的是Python的版本。

5. 激活新的Conda环境

使用以下命令激活你的新环境:

bash 复制代码
conda activate my_new_env

6. 安装包

在激活的环境中,你现在可以安装所需的包,它们将被存储在SD卡上:

bash 复制代码
conda install numpy pandas

7. 验证环境位置

为了确认环境和包确实被安装在了SD卡上,我们可以使用以下命令查看环境目录:

bash 复制代码
conda env list

这将列出所有环境及其对应的路径。确保你的新环境my_new_env的路径指向了/home/conda_envs

至此,我们就成功的把Conda环境改成默认装在SD卡上了

OVER👻

相关推荐
神奇夜光杯3 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
筱源源4 分钟前
Kafka-linux环境部署
linux·kafka
正义的彬彬侠5 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon15 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~22 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨23 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画27 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云29 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓38 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing38 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc