【解决Jetson Nano 内存不足问题】纯命令行将 Conda 环境迁移到 SD 卡

前言

Jetson Nano 板载只有 16GB 的存储空间,在安装完 Ubuntu 和 Conda 环境后,剩余空间就捉襟见肘了,无法满足安装 PyTorch 等大型包的需求。此时如果你有一张SD卡,那么可以考虑将 Conda 环境迁移到 SD 卡上。

但网上的教程基本都是选择将操作系统迁移到SD卡以扩展存储,但这往往会带来性能下降的问题。其实可以只改Conda的安装目录实现一样的效果(因为主要的内存都是Conda环境占用):将Conda环境默认安装在SD卡上,而无需迁移整个操作系统。这种方法不仅有效利用了额外的存储空间,而且保持了系统的性能。

于是就有了这个教程😁

1. 准备工作

在开始之前,请确保你的Jetson Nano已经安装了Conda环境管理器。如果没有的话可以通过以下命令安装:

bash 复制代码
sudo apt update
sudo apt install conda

或者直接去anaconda官网下载(我是下的mambaforge,可以认为是一个小型的anaconda)

2. 创建新的Conda环境目录

首先,我们需要在SD卡上创建一个新的目录,用于存放Conda环境和包。假设你的SD卡已经挂载在/home目录下,可以使用以下命令创建环境目录:

bash 复制代码
mkdir /home/conda_envs

3. (💥最关键的一步💥)配置Conda环境变量

为了告诉Conda使用新创建的目录作为环境和包的存储位置,需要设置CONDA_ENVS_DIRS环境变量。咱们可以在你的shell配置文件中(如.bashrc.zshrc)添加以下行:

bash 复制代码
export CONDA_ENVS_DIRS="/home/conda_envs"

保存更改后,运行以下命令使配置生效:

bash 复制代码
source ~/.bashrc

4. 创建新的Conda环境

然后我们就可以使用Conda命令创建一个新的环境,它将默认存储在CONDA_ENVS_DIRS指定的目录中:

bash 复制代码
conda create --name my_new_env python=3.8

这里的my_new_env是新环境的名称,python=3.8指定的是Python的版本。

5. 激活新的Conda环境

使用以下命令激活你的新环境:

bash 复制代码
conda activate my_new_env

6. 安装包

在激活的环境中,你现在可以安装所需的包,它们将被存储在SD卡上:

bash 复制代码
conda install numpy pandas

7. 验证环境位置

为了确认环境和包确实被安装在了SD卡上,我们可以使用以下命令查看环境目录:

bash 复制代码
conda env list

这将列出所有环境及其对应的路径。确保你的新环境my_new_env的路径指向了/home/conda_envs

至此,我们就成功的把Conda环境改成默认装在SD卡上了

OVER👻

相关推荐
龚大龙4 分钟前
机器学习(李宏毅)——Domain Adaptation
人工智能·机器学习
vortex510 分钟前
在Kali中使用虚拟环境安装python工具的最佳实践:以 pwncat 为例
linux·python·网络安全·渗透测试·pip·kali
源码姑娘12 分钟前
基于DeepSeek的智慧医药系统(源码+部署教程)
java·人工智能·程序人生·毕业设计·springboot·健康医疗·课程设计
AIGC_ZY12 分钟前
扩散模型中三种加入条件的方式:Vanilla Guidance,Classifier Guidance 以及 Classifier-Free Guidance
深度学习·机器学习·计算机视觉
LKAI.33 分钟前
MongoDB用户管理和复制组
linux·数据库·mongodb
linux修理工40 分钟前
moodle 开源的在线学习管理系统(LMS)部署
linux
☞黑心萝卜三条杠☜1 小时前
后门攻击仓库 backdoor attack
论文阅读·人工智能
@Mr_LiuYang1 小时前
Conda常用命令汇总
conda·包管理·依赖管理·环境管理·python环境
三三木木七1 小时前
BERT、T5、GPTs,Llama
人工智能·深度学习·bert
熬夜苦读学习2 小时前
库制作与原理
linux·数据库·后端