【opencv】教程代码 —video(3) 视频背景剔除

bg_sub.cpp

这段代码的功能是把视频中的背景和前景分离,提取出前景的运动物体 。根据用户选择的不同的模式,可以选择基于MOG2或者基于KNN的方法 来进行背景减除。在处理每一帧图像的过程中,首先使用背景减除模型对图像帧进行处理,得到一个前景掩码,该掩码中包含了所有被认为是前景的像素。然后将处理后的掩码图像和原始帧同时显示出来 。通过这种方式,用户能够清楚看到前景移动物体被成功地从背景中分离出来,这个过程是实时的。

cpp 复制代码
/**
 * @file bg_sub.cpp
 * @brief 背景减除教程样例代码
 * @author Domenico D. Bloisi
 */


#include <iostream>  // 引入 C++ 的输入输出流库
#include <sstream>  // 引入字符串流,它是 iostream 的一部分,提供了方便的字符串输入和输出功能
#include <opencv2/imgcodecs.hpp>  // 引入 OpenCV 的图像编解码模块,用于图像的读取和保存
#include <opencv2/imgproc.hpp>  // 引入 OpenCV 的图像处理模块,包含很多图像处理的功能
#include <opencv2/videoio.hpp>  // 引入 OpenCV 的视频 IO 模块,用于视频保存和读取、以及本机摄像头的访问
#include <opencv2/highgui.hpp>  // 引入 OpenCV 的高级 GUI 模块,用于创建界面显示图像
#include <opencv2/video.hpp>  // 引入 OpenCV 的视频分析模块,包含了许多常见的视频分析算法,比如对象跟踪、运动估计等


using namespace cv;  // 使用 OpenCV 命名空间
using namespace std;


const char* params
    = "{ help h         |           | Print usage }"
      "{ input          | vtest.avi | Path to a video or a sequence of image }"
      "{ algo           | MOG2      | Background subtraction method (KNN, MOG2) }";


int main(int argc, char* argv[])  
{
    // 命令行参数解析
    CommandLineParser parser(argc, argv, params);
    string about_message = "This program shows how to use background subtraction methods provided by "
                  " OpenCV. You can process both videos and images.\n";
    parser.about(about_message);


    if (parser.has("help"))   // 如果有帮助信息
    {
        parser.printMessage();  // 打印使用帮助信息
    }


    // 创建背景减除对象
    Ptr<BackgroundSubtractor> pBackSub;
     //根据输入确定使用 KNN 还是 MOG2 
    if (parser.get<String>("algo") == "MOG2")
        pBackSub = createBackgroundSubtractorMOG2();
    else
        pBackSub = createBackgroundSubtractorKNN();


    // 输入视频
    VideoCapture capture( samples::findFile(parser.get<String>("input")) );
    if (!capture.isOpened()){  
        cerr << "Unable to open: " << parser.get<String>("input") << endl;
        return 0;
    }
    Mat frame, fgMask;  // 定义图像矩阵,用于读取视频帧以及存储背景减除图像
    while (true) {
        capture >> frame;  // 读取一帧
        if (frame.empty())
            break;


        // 更新背景模型
        pBackSub->apply(frame, fgMask);
        
        // 在当前帧上显示帧编号
        rectangle(frame, cv::Point(10, 2), cv::Point(100,20), cv::Scalar(255,255,255), -1);
        // 在 frame 上画一个白色矩形,左上角坐标为(10, 2),右下角坐标为(100, 20),颜色为白色(即 (255,255,255))。
        
        stringstream ss;
        ss << capture.get(CAP_PROP_POS_FRAMES);
        // 用 stringstream 将视频的当前帧数转换为字符串。
        
        string frameNumberString = ss.str();
        // 将帧数从 stringstream 转换为 string。
        
        putText(frame, frameNumberString.c_str(), cv::Point(15, 15), FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
        // 在 frame 上的(15, 15)位置用黑色字体输出当前的帧数。
        // 显示当前帧和背景掩码
        imshow("Frame", frame);
        imshow("FG Mask", fgMask);
       
        int keyboard = waitKey(30);  // 获取键盘输入
        if (keyboard == 'q' || keyboard == 27)
            break;
    }
    return 0;
}
相关推荐
白-胖-子2 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手3 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道4 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.05 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12015 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师5 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen5 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域5 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
源码_V_saaskw5 小时前
JAVA图文短视频交友+自营商城系统源码支持小程序+Android+IOS+H5
java·微信小程序·小程序·uni-app·音视频·交友
Java樱木5 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能