Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果

目录

[Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果](#Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果)

一、简单介绍

二、简单颜色反转效果实现原理

三、简单颜色反转效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python 基于 OpenCV 进行视觉图像处理,......

二、简单颜色反转效果实现原理

颜色反转是一种图像处理技术,可以改变图像的颜色外观。在灰度图像中,颜色反转意味着将每个像素的灰度值取反;在彩色图像中,颜色反转意味着将每个通道的像素值取反。

实现原理:

  1. 灰度反转: 对于灰度图像,颜色反转意味着将每个像素的灰度值取反。例如,原始像素值为0时,取反后变为255;原始像素值为255时,取反后变为0。

  2. 彩色反转: 对于彩色图像,颜色反转意味着将每个通道的像素值取反。例如,对于RGB图像,红色通道的原始像素值为0时,取反后变为255;原始像素值为255时,取反后变为0。对绿色和蓝色通道也是同样的处理。

三、简单颜色反转效果案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

python 复制代码
"""
简单颜色反转效果
    1、灰度反转: 将彩色图像转换为灰度图像,然后将每个像素的灰度值取反。
    2、彩色反转: 将每个通道的像素值取反,可以通过255减去原始像素值来实现。
"""


import cv2


# 灰度反转
def grayscale_invert(image):
    """
    灰度反转
    :param image:
    :return:
    """
    # 转换为灰度图像
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 灰度反转
    inverted_image = 255 - gray_image
    return inverted_image


# 彩色反转
def color_invert(image):
    """
    彩色反转
    :param image:
    :return:
    """
    # 彩色反转
    inverted_image = 255 - image
    return inverted_image


def main():
    # 读取图像
    image = cv2.imread('Images/DogFace.jpg')

    # 设置窗口属性,并显示图片
    cv2.namedWindow("Dog", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Dog', image)

    # 灰度反转
    inverted_gray = grayscale_invert(image)
    # 彩色反转
    inverted_color = color_invert(image)

    # 设置窗口属性,并显示图片
    cv2.namedWindow("Grayscale Inverted", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Grayscale Inverted', inverted_gray)

    # 设置窗口属性,并显示图片
    cv2.namedWindow("Color Inverted", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Color Inverted', inverted_color)

    cv2.waitKey(0)
    cv2.destroyAllWindows()


if __name__ == "__main__":
    main()

四、注意事项

  1. 在处理灰度图像时,确保将图像转换为灰度图像。
  2. 在处理彩色图像时,确保将每个通道的像素值限制在0到255之间,以防止溢出。
  3. 考虑图像的颜色深度,对于8位图像,像素值范围为0到255;对于16位图像,像素值范围为0到65535。
相关推荐
好家伙VCC4 分钟前
**发散创新:探索群体智能编程中的新境界**随着科技的飞速发展,群体智能逐渐成为编程领域的一大研究热点。本文将深入探讨群体智能的概念、优
java·python·科技
心无旁骛~8 分钟前
PIL与OpenCV图像读取的颜色格式陷阱:RGB vs BGR
人工智能·opencv·计算机视觉
TwoAnts&DingJoy37 分钟前
数据分析-泊松分布
python·机器学习·数据挖掘·数据分析·统计学·泊松分布
Lxinccode1 小时前
python(48) : 命名截图[Windows工具(3)]
开发语言·python·截图·快速截图
bestcxx1 小时前
0.2、AI Agent 开发中 ReAct 和 MAS 的概念
人工智能·python·dify·ai agent
fsnine2 小时前
Python Web框架对比与模型部署
开发语言·前端·python
B站计算机毕业设计之家2 小时前
深度学习实战:python动物识别分类检测系统 计算机视觉 Django框架 CNN算法 深度学习 卷积神经网络 TensorFlow 毕业设计(建议收藏)✅
python·深度学习·算法·计算机视觉·分类·毕业设计·动物识别
程序猿小D2 小时前
【完整源码+数据集+部署教程】 【运输&加载码头】仓库新卸物料检测系统源码&数据集全套:改进yolo11-DRBNCSPELAN
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·仓库新卸物料检测系统
SiYuanFeng3 小时前
《Synthetic Visual Genome》论文数据集的预处理
python·场景图