Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果

目录

[Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果](#Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之十 简单颜色反转效果)

一、简单介绍

二、简单颜色反转效果实现原理

三、简单颜色反转效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python 基于 OpenCV 进行视觉图像处理,......

二、简单颜色反转效果实现原理

颜色反转是一种图像处理技术,可以改变图像的颜色外观。在灰度图像中,颜色反转意味着将每个像素的灰度值取反;在彩色图像中,颜色反转意味着将每个通道的像素值取反。

实现原理:

  1. 灰度反转: 对于灰度图像,颜色反转意味着将每个像素的灰度值取反。例如,原始像素值为0时,取反后变为255;原始像素值为255时,取反后变为0。

  2. 彩色反转: 对于彩色图像,颜色反转意味着将每个通道的像素值取反。例如,对于RGB图像,红色通道的原始像素值为0时,取反后变为255;原始像素值为255时,取反后变为0。对绿色和蓝色通道也是同样的处理。

三、简单颜色反转效果案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

python 复制代码
"""
简单颜色反转效果
    1、灰度反转: 将彩色图像转换为灰度图像,然后将每个像素的灰度值取反。
    2、彩色反转: 将每个通道的像素值取反,可以通过255减去原始像素值来实现。
"""


import cv2


# 灰度反转
def grayscale_invert(image):
    """
    灰度反转
    :param image:
    :return:
    """
    # 转换为灰度图像
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 灰度反转
    inverted_image = 255 - gray_image
    return inverted_image


# 彩色反转
def color_invert(image):
    """
    彩色反转
    :param image:
    :return:
    """
    # 彩色反转
    inverted_image = 255 - image
    return inverted_image


def main():
    # 读取图像
    image = cv2.imread('Images/DogFace.jpg')

    # 设置窗口属性,并显示图片
    cv2.namedWindow("Dog", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Dog', image)

    # 灰度反转
    inverted_gray = grayscale_invert(image)
    # 彩色反转
    inverted_color = color_invert(image)

    # 设置窗口属性,并显示图片
    cv2.namedWindow("Grayscale Inverted", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Grayscale Inverted', inverted_gray)

    # 设置窗口属性,并显示图片
    cv2.namedWindow("Color Inverted", cv2.WINDOW_KEEPRATIO)
    cv2.imshow('Color Inverted', inverted_color)

    cv2.waitKey(0)
    cv2.destroyAllWindows()


if __name__ == "__main__":
    main()

四、注意事项

  1. 在处理灰度图像时,确保将图像转换为灰度图像。
  2. 在处理彩色图像时,确保将每个通道的像素值限制在0到255之间,以防止溢出。
  3. 考虑图像的颜色深度,对于8位图像,像素值范围为0到255;对于16位图像,像素值范围为0到65535。
相关推荐
通信.萌新43 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu1 小时前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask
博观而约取,厚积而薄发2 小时前
激光雷达和相机早期融合
图像处理
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
水银嘻嘻2 小时前
【Mac】Python相关知识经验
开发语言·python·macos
汤姆和佩琦2 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
我的运维人生3 小时前
Java并发编程深度解析:从理论到实践
java·开发语言·python·运维开发·技术共享