上位机图像处理和嵌入式模块部署(qmacvisual查找圆缺角)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

前面我们讲过识别,讲过标定,讲过测量,讲过匹配,但就是没有讨论过基于图像的产品检测。但事实上,产品检测和测量、拟合是一脉相承的。和深度学习不同,因为深度学习是通过定位、标定和训练来完成的,而传统机器视觉仍然是借助于图形拟合之后,判断拟合后的特征,和实际标准图像特征之间的差距,判断产品质量是否有问题。这种拟合可以是直线、矩形、圆或者是其他凸多边形,都是ok的,只要有一个参考的标准就行。

今天正好验证一种使用的方法,那就是查找圆缺角。

1、创建项目和流程

使用qmacvisual之前,第一步就是创建项目和流程。

2、导入图像

导入图像主要使用了【图像处理】中的【获取图像】控件。直接用鼠标,将它从树形控件拖到流程当中,双击打开,配置一下图像的路径即可,

从图像上面看,在左下角有一个很明显的缺角,这正是我们需要检测的部分。

3、查找圆缺角

插件位于【几何测量】下面。直接用鼠标拖到流程配置区域,双击即可,

这是已经配置、计算好的效果。整个插件有三个地方需要进行配置。第一处,就是输入图像的来源。第二处,就是ROI区域配置。由于是圆缺角的设置,所以这里ROI是一个有内外圆的蓝色图形。双击后,会出现两个蓝色圆点,借助于这两个圆点,就可以分别调试内外圆的直径。实际配置的时候,内圆需要放在白色区域,外圆需要放在黑色区域。

第三处,就是参数的配置。整个配置和之前寻找圆是差不多的,比如扫描方向、灰度方向、边缘强度等。唯一不同的就是缺口差值,也就是需要我们告诉算法,差值是多少的时候,会被认为是缺口,这一点很重要。

所有三处都配置完毕之后,直接单击执行按钮即可。如果不出意外,就会在图像中找到一条绿色的连线,提示我们缺角在什么方位。这条线如果看的不是很清楚,那么在整个图像的左下方会有一些字符打印,这里面也有我们需要的检测结果信息,截图如下所示,

4、泛化的产品检测

所谓的产品检测,就是将实际生产的产品,和标准产品进行对比。经过设计、调优的图像,总能够在图像当中提取一些有用的信息,比如说长度、宽度、长宽比例、周长、面积、圆度、惯性、凸性、颜色等等。这些图形如果提取出来,并且分割好了,就可以被拿来和标准模块进行比对和验证,如果比较的结果在误差范围之内,那就代表产品本身是ok的、没有问题的;但是如果误差超过了我们设置的范围,这就代表产品本身其实是有改进空间的,这就是利用机器视觉技术对产品进行检验的基本原理,听上去其实也不复杂。

相关推荐
奇舞精选12 分钟前
超越Siri的耳朵:ASR与Whisper零代码部署实战指南
前端·人工智能·aigc
说私域23 分钟前
兴趣电商内容数据洞察未来市场走向研究——基于开源AI智能名片链动2+1模式S2B2C商城小程序的实践
人工智能·小程序
纪东东30 分钟前
机器学习——使用K近邻算法实现一个识别手写数字系统
人工智能·机器学习·近邻算法
视觉语言导航30 分钟前
南科大适应、协同与规划的完美融合!P³:迈向多功能的具身智能体
人工智能·具身智能
THMAIL33 分钟前
机器学习从入门到精通 - 数据预处理实战秘籍:清洗、转换与特征工程入门
人工智能·python·算法·机器学习·数据挖掘·逻辑回归
Moutai码农1 小时前
1.5、机器学习-回归算法
人工智能·机器学习·回归
非门由也1 小时前
《sklearn机器学习——绘制分数以评估模型》验证曲线、学习曲线
人工智能·机器学习·sklearn
THMAIL1 小时前
深度学习从入门到精通 - AutoML与神经网络搜索(NAS):自动化模型设计未来
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
Debug_Snail2 小时前
【营销策略算法】关联规则学习-购物篮分析
大数据·人工智能
山烛2 小时前
深度学习:残差网络ResNet与迁移学习
人工智能·python·深度学习·残差网络·resnet·迁移学习