子数组 OR/AND/GCD 模板(补题)

3097. 或值至少为 K 的最短子数组 II

给你一个 非负 整数数组 nums 和一个整数 k

如果一个数组中所有元素的按位或运算 OR 的值 至少k ,那么我们称这个数组是 特别的

请你返回 nums最短特别非空
子数组

的长度,如果特别子数组不存在,那么返回 -1

示例 1:
**输入:**nums = [1,2,3], k = 2

**输出:**1

解释:

子数组 [3] 的按位 OR 值为 3 ,所以我们返回 1

示例 2:
**输入:**nums = [2,1,8], k = 10

**输出:**3

解释:

子数组 [2,1,8] 的按位 OR 值为 11 ,所以我们返回 3

示例 3:
**输入:**nums = [1,2], k = 0

**输出:**1

解释:

子数组 [1] 的按位 OR 值为 1 ,所以我们返回 1

提示:

  • 1 <= nums.length <= 2 * 105
  • 0 <= nums[i] <= 109
  • 0 <= k <= 109

解析:

看了别人的 模板进行总结 一下:

在本题暴力的做法是 定左区间,搜索右区间 。在or是只可以变大。

由单调性可以知道。

反过来 我们可以假定区间的右端点,对区间 or运算的 左端点 进行更新。

这样子就缩小的区间。

复制代码
class Solution {
public:
    int minimumSubarrayLength(vector<int>& nums, int k) {
        int ans = INT_MAX;
        vector<pair<int,int>> ors;
        for(int i = 0;i < nums.size();i++)
        {
            ors.emplace_back(0,i);
            //cout <<ors.size()<<endl;
            int j = 0;
            for(auto &p : ors)
            {
                auto &[or_,left] = p;
                or_ |= nums[i];

                if(or_ >= k){
                    ans = min(ans,i - left + 1);//以i为右端点进行ans
                }
                
                if(ors[j].first == or_)
                {
                    ors[j].second = left;
                }
                else{
                    ors[++j] = p;
                }
            }
           // cout << j <<endl;
            ors.resize(j+1);
            //cout << ors.size()<<endl;
        }
        return ans == INT_MAX ?-1:ans;
    }
};

时间复杂度 为 :O(n* 数组长度)

2447. 最大公因数等于 K 的子数组数目

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 nums 的子数组中元素的最大公因数等于 k 的子数组数目。

子数组 是数组中一个连续的非空序列。

数组的最大公因数 是能整除数组中所有元素的最大整数。

示例 1:

复制代码
输入:nums = [9,3,1,2,6,3], k = 3
输出:4
解释:nums 的子数组中,以 3 作为最大公因数的子数组如下:
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]

示例 2:

复制代码
输入:nums = [4], k = 7
输出:0
解释:不存在以 7 作为最大公因数的子数组。
提示:
  • 1 <= nums.length <= 1000
  • 1 <= nums[i], k <= 109

解析:

这一题和上一题也是十分的相似。

首先nums[i] 要可以被k整除。

复制代码
class Solution {
public:
    int subarrayGCD(vector<int>& nums, int k) {
        int res = 0,n = nums.size(), i0 = -1;
        vector<pair<int,int>> a;
        for(int i = 0;i < nums.size();i++)
        {
           if(nums[i] % k)
           {
            a.clear();
            i0 = i;
            continue;
           }
            a.push_back({nums[i],i});
           int j = 0;
           for(auto &p : a)
           {
                 p.first = gcd(p.first,nums[i]);
                 if(a[j].first != p.first)
                 {
                    j++;
                    a[j] = p;
                 }
                 else{
                    a[j].second = p.second;
                 }
           }
            a.resize(j+1);
            if(a[0].first == k){
                res += a[0].second - i0;
            }
        }
        return res;
    }
};
相关推荐
随缘而动,随遇而安1 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董2 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
Alfred king5 小时前
面试150 生命游戏
leetcode·游戏·面试·数组
水木兰亭5 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess076 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁6 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu6 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu6 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划
freexyn7 小时前
Matlab自学笔记六十一:快速上手解方程
数据结构·笔记·matlab
ysa0510307 小时前
Dijkstra 算法#图论
数据结构·算法·图论