LeetCode_33_中等_搜索旋转排序数组

文章目录

  • [1. 题目](#1. 题目)
  • [2. 思路及代码实现详解(Python)](#2. 思路及代码实现详解(Python))
    • [2.1 二分查找](#2.1 二分查找)

1. 题目

整数数组 n u m s nums nums 按升序排列,数组中的值 互不相同

在传递给函数之前, n u m s nums nums 在预先未知的某个下标 k ( 0 < = k < n u m s . l e n g t h ) k(0 <= k < nums.length) k(0<=k<nums.length) 上进行了 旋转,使数组变为 [ n u m s [ k ] , n u m s [ k + 1 ] , . . . , n u m s [ n − 1 ] , n u m s [ 0 ] , n u m s [ 1 ] , . . . , n u m s [ k − 1 ] ] [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] [nums[k],nums[k+1],...,nums[n−1],nums[0],nums[1],...,nums[k−1]](下标 从 0 0 0 开始 计数)。例如, [ 0 , 1 , 2 , 4 , 5 , 6 , 7 ] [0,1,2,4,5,6,7] [0,1,2,4,5,6,7] 在下标 3 3 3 处经旋转后可能变为 [ 4 , 5 , 6 , 7 , 0 , 1 , 2 ] [4,5,6,7,0,1,2] [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 n u m s nums nums 和一个整数 t a r g e t target target ,如果 n u m s nums nums 中存在这个目标值 t a r g e t target target ,则返回它的下标,否则返回 − 1 -1 −1 。

你必须设计一个时间复杂度为 O ( l o g n ) O(log n) O(logn) 的算法解决此问题。

示例 1:

输入: n u m s = [ 4 , 5 , 6 , 7 , 0 , 1 , 2 ] , t a r g e t = 0 nums = [4,5,6,7,0,1,2], target = 0 nums=[4,5,6,7,0,1,2],target=0

输出: 4 4 4

示例 2:

输入: n u m s = [ 4 , 5 , 6 , 7 , 0 , 1 , 2 ] , t a r g e t = 3 nums = [4,5,6,7,0,1,2], target = 3 nums=[4,5,6,7,0,1,2],target=3

输出: − 1 -1 −1

示例 3:

输入: n u m s = [ 1 ] , t a r g e t = 0 nums = [1], target = 0 nums=[1],target=0

输出: − 1 -1 −1


提示

  • 1 < = n u m s . l e n g t h < = 5000 1 <= nums.length <= 5000 1<=nums.length<=5000
  • − 1 0 4 < = n u m s [ i ] < = 1 0 4 -10^4 <= nums[i] <= 10^4 −104<=nums[i]<=104
  • n u m s nums nums 中的每个值都 独一无二
  • 题目数据保证 n u m s nums nums 在预先未知的某个下标上进行了旋转

2. 思路及代码实现详解(Python)

2.1 二分查找

对于有序数组,可以使用二分查找的方法查找元素。但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分查找吗?答案是可以的。

可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 6 6 这个位置分开以后数组变成了 [ 4 , 5 , 6 ] [4, 5, 6] [4,5,6] 和 [ 7 , 0 , 1 , 2 ] [7, 0, 1, 2] [7,0,1,2] 两个部分,其中左边 [ 4 , 5 , 6 ] [4, 5, 6] [4,5,6] 这个部分的数组是有序的,其他也是如此。

这启示我们可以在常规二分查找的时候查看当前 m i d mid mid 为分割位置分割出来的两个部分 [ l , m i d ] [l, mid] [l,mid] 和 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 t a r g e t target target 在不在这个部分:

  • 如果 [ l , m i d − 1 ] [l, mid - 1] [l,mid−1] 是有序数组,且 t a r g e t target target 的大小落在区间 [ n u m s [ l ] , n u m s [ m i d ] ) [nums[l],nums[mid]) [nums[l],nums[mid]),则我们应该将搜索范围缩小至 [ l , m i d − 1 ] [l, mid - 1] [l,mid−1],否则在 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r] 中寻找。
  • 如果 [ m i d , r ] [mid, r] [mid,r] 是有序数组,且 t a r g e t target target 的大小落在区间 ( n u m s [ m i d + 1 ] , n u m s [ r ] ] (nums[mid+1],nums[r]] (nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r],否则在 [ l , m i d − 1 ] [l, mid - 1] [l,mid−1] 中寻找。

该算法的时间复杂度为 O ( l o g n ) O(log n) O(logn),其中 n n n 为 n u m s nums nums 数组的大小,空间复杂度为 O ( 1 ) O(1) O(1)。

python 复制代码
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        if not nums:
            return -1
        l, r = 0, len(nums) - 1
        while l <= r:
            mid = (l + r) // 2
            if nums[mid] == target:
                return mid
            if nums[0] <= nums[mid]:
                if nums[0] <= target < nums[mid]:
                    r = mid - 1
                else:
                    l = mid + 1
            else:
                if nums[mid] < target <= nums[len(nums) - 1]:
                    l = mid + 1
                else:
                    r = mid - 1
        return -1

执行用时:37 ms

消耗内存:16.70 MB

题解来源:力扣官方题解

相关推荐
努力学习编程的伍大侠7 分钟前
基础排序算法
数据结构·c++·算法
XiaoLeisj35 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
Jasmine_llq1 小时前
《 火星人 》
算法·青少年编程·c#
闻缺陷则喜何志丹1 小时前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
Lenyiin1 小时前
01.02、判定是否互为字符重排
算法·leetcode
鸽鸽程序猿2 小时前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd2 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo6172 小时前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v2 小时前
leetCode43.字符串相乘
java·数据结构·算法