LeetCode-1600. 王位继承顺序【树 深度优先搜索 设计 哈希表】
题目描述:
一个王国里住着国王、他的孩子们、他的孙子们等等。每一个时间点,这个家庭里有人出生也有人死亡。
这个王国有一个明确规定的王位继承顺序,第一继承人总是国王自己。我们定义递归函数 Successor(x, curOrder) ,给定一个人 x 和当前的继承顺序,该函数返回 x 的下一继承人。
Successor(x, curOrder):
如果 x 没有孩子或者所有 x 的孩子都在 curOrder 中:
如果 x 是国王,那么返回 null
否则,返回 Successor(x 的父亲, curOrder)
否则,返回 x 不在 curOrder 中最年长的孩子
比方说,假设王国由国王,他的孩子 Alice 和 Bob (Alice 比 Bob 年长)和 Alice 的孩子 Jack 组成。
一开始, curOrder 为 ["king"].
调用 Successor(king, curOrder) ,返回 Alice ,所以我们将 Alice 放入 curOrder 中,得到 ["king", "Alice"] 。
调用 Successor(Alice, curOrder) ,返回 Jack ,所以我们将 Jack 放入 curOrder 中,得到 ["king", "Alice", "Jack"] 。
调用 Successor(Jack, curOrder) ,返回 Bob ,所以我们将 Bob 放入 curOrder 中,得到 ["king", "Alice", "Jack", "Bob"] 。
调用 Successor(Bob, curOrder) ,返回 null 。最终得到继承顺序为 ["king", "Alice", "Jack", "Bob"] 。
通过以上的函数,我们总是能得到一个唯一的继承顺序。
请你实现 ThroneInheritance 类:
ThroneInheritance(string kingName) 初始化一个 ThroneInheritance 类的对象。国王的名字作为构造函数的参数传入。
void birth(string parentName, string childName) 表示 parentName 新拥有了一个名为 childName 的孩子。
void death(string name) 表示名为 name 的人死亡。一个人的死亡不会影响 Successor 函数,也不会影响当前的继承顺序。你可以只将这个人标记为死亡状态。
string[] getInheritanceOrder() 返回 除去 死亡人员的当前继承顺序列表。
示例:
输入:
["ThroneInheritance", "birth", "birth", "birth", "birth", "birth", "birth", "getInheritanceOrder", "death", "getInheritanceOrder"]
[["king"], ["king", "andy"], ["king", "bob"], ["king", "catherine"], ["andy", "matthew"], ["bob", "alex"], ["bob", "asha"], [null], ["bob"], [null]]
输出:
[null, null, null, null, null, null, null, ["king", "andy", "matthew", "bob", "alex", "asha", "catherine"], null, ["king", "andy", "matthew", "alex", "asha", "catherine"]]
解释:
ThroneInheritance t= new ThroneInheritance("king"); // 继承顺序:king
t.birth("king", "andy"); // 继承顺序:king > andy
t.birth("king", "bob"); // 继承顺序:king > andy > bob
t.birth("king", "catherine"); // 继承顺序:king > andy > bob > catherine
t.birth("andy", "matthew"); // 继承顺序:king > andy > matthew > bob > catherine
t.birth("bob", "alex"); // 继承顺序:king > andy > matthew > bob > alex > catherine
t.birth("bob", "asha"); // 继承顺序:king > andy > matthew > bob > alex > asha > catherine
t.getInheritanceOrder(); // 返回 ["king", "andy", "matthew", "bob", "alex", "asha", "catherine"]
t.death("bob"); // 继承顺序:king > andy > matthew > bob(已经去世)> alex > asha > catherine
t.getInheritanceOrder(); // 返回 ["king", "andy", "matthew", "alex", "asha", "catherine"]
提示:
1 <= kingName.length, parentName.length, childName.length, name.length <= 15
kingName,parentName, childName 和 name 仅包含小写英文字母。
所有的参数 childName 和 kingName 互不相同。
所有 death 函数中的死亡名字 name 要么是国王,要么是已经出生了的人员名字。
每次调用 birth(parentName, childName) 时,测试用例都保证 parentName 对应的人员是活着的。
最多调用 105 次birth 和 death 。
最多调用 10 次 getInheritanceOrder 。
解题思路一:多叉树的前序遍历【深度优先搜索】
根据题目描述,我们可以发现,王位继承顺序实际上是一个多叉树的前序遍历。我们可以使用一个哈希表 g 存储每个人的孩子,使用一个集合 dead存储已经去世的人。
调用 birth(parentName, childName) 时,我们将 childName 添加到 parentName 的孩子列表中。
调用 death(name) 时,我们将 name 添加到 dead 集合中。
调用 getInheritanceOrder() 时,我们从国王开始进行深度优先搜索,如果当前节点 x 没有去世,我们将 x 添加到答案列表中,然后递归地遍历 x 的所有孩子。
python
class ThroneInheritance:
def __init__(self, kingName: str):
self.king = kingName
self.dead = set()
self.g = defaultdict(list)
def birth(self, parentName: str, childName: str) -> None:
self.g[parentName].append(childName)
def death(self, name: str) -> None:
self.dead.add(name)
def getInheritanceOrder(self) -> List[str]:
def dfs(x: str):
x not in self.dead and ans.append(x)
for y in self.g[x]:
dfs(y)
ans = []
dfs(self.king)
return ans
# Your ThroneInheritance object will be instantiated and called as such:
# obj = ThroneInheritance(kingName)
# obj.birth(parentName,childName)
# obj.death(name)
# param_3 = obj.getInheritanceOrder()
birth 和 death 的时间复杂度均为 O(1),getInheritanceOrder 的时间复杂度为 O(n)
空间复杂度:O(n)
解题思路二:0
python
时间复杂度:O(n)
空间复杂度:O(n)
解题思路三:0
python
时间复杂度:O(n)
空间复杂度:O(n)