【opencv】示例-cout_mat.cpp cout输出各种格式矩阵、向量

cpp 复制代码
/*
 * cvout_sample 只是演示了 cv::Mat 的序列化输出能力。
 * 也就是说,现在可以这样使用:cv::Mat M(...); cout << M;。
 */


#include "opencv2/core.hpp" // 包含OpenCV核心功能的头文件
#include <iostream> // 包含标准输入输出流的头文件


// 使用标准和OpenCV命名空间中的名字,避免每次调用时都要加前缀
using namespace std;
using namespace cv;


// 帮助信息的函数
static void help(char** argv)
{
    cout
    << "\n------------------------------------------------------------------\n"
    << " This program shows the serial out capabilities of cv::Mat\n"
    << "That is, cv::Mat M(...); cout << M;  Now works.\n"
    << "Output can be formatted to OpenCV, matlab, python, numpy, csv and \n"
    << "C styles Usage:\n"
    << argv[0]
    << "\n------------------------------------------------------------------\n\n"
    << endl;
}


// 程序的主入口点
int main(int argc, char** argv)
{
    cv::CommandLineParser parser(argc, argv, "{help h||}"); // 创建命令行解析器
    if (parser.has("help")) // 如果用户请求帮助
    {
        help(argv); // 显示帮助信息
        return 0; // 退出程序
    }
    Mat I = Mat::eye(4, 4, CV_64F); // 创建一个4x4的双精度单位矩阵
    I.at<double>(1,1) = CV_PI; // 将第1行第1列的元素设为π
    cout << "I = \n" << I << ";" << endl << endl; // 打印矩阵


    Mat r = Mat(10, 3, CV_8UC3); // 创建一个10x3的8位无符号3通道(彩色)矩阵
    randu(r, Scalar::all(0), Scalar::all(255)); // 使用随机值填充矩阵


    // 以下部分演示不同输出格式
    cout << "r (default) = \n" << r << ";" << endl << endl;
    cout << "r (matlab) = \n" << format(r, Formatter::FMT_MATLAB) << ";" << endl << endl;
    cout << "r (python) = \n" << format(r, Formatter::FMT_PYTHON) << ";" << endl << endl;
    cout << "r (numpy) = \n" << format(r, Formatter::FMT_NUMPY) << ";" << endl << endl;
    cout << "r (csv) = \n" << format(r, Formatter::FMT_CSV) << ";" << endl << endl;
    cout << "r (c) = \n" << format(r, Formatter::FMT_C) << ";" << endl << endl;


    Point2f p(5, 1); // 创建一个2D浮点型点
    cout << "p = " << p << ";" << endl; // 打印点


    Point3f p3f(2, 6, 7); // 创建一个3D浮点型点
    cout << "p3f = " << p3f << ";" << endl; // 打印点


    vector<float> v; // 创建一个浮点型向量
    v.push_back(1); // 向向量中添加元素
    v.push_back(2);
    v.push_back(3);


    cout << "shortvec = " << Mat(v) << endl; // 打印向量


    vector<Point2f> points(20); // 创建一个包含20个2D浮点型点的向量
    for (size_t i = 0; i < points.size(); ++i) // 用循环填充这个向量
        points[i] = Point2f((float)(i * 5), (float)(i % 7));


    cout << "points = " << points << ";" << endl; // 打印点的向量
    return 0; // 程序结束
}

这段代码展示了OpenCV库中的cv::Mat类的序列化输出 功能。它包含了一系列可以输出为不同格式的示例,如OpenCV风格、Matlab风格、Python的NumPy风格、CSV风格和C风格。同时,也展示了如何在控制台中显示点和点向量。总的来说,这段代码主要用于教学和演示如何在C++中使用OpenCV的cv::Mat对象以不同的编程语言风格格式化输出。

终端输出:

cs 复制代码
I =
[1, 0, 0, 0;
 0, 3.141592653589793, 0, 0;
 0, 0, 1, 0;
 0, 0, 0, 1];


r (default) =
[ 91,   2,  79, 179,  52, 205, 236,   8, 181;
 239,  26, 248, 207, 218,  45, 183, 158, 101;
 102,  18, 118,  68, 210, 139, 198, 207, 211;
 181, 162, 197, 191, 196,  40,   7, 243, 230;
  45,   6,  48, 173, 242, 125, 175,  90,  63;
  90,  22, 112, 221, 167, 224, 113, 208, 123;
 214,  35, 229,   6, 143, 138,  98,  81, 118;
 187, 167, 140, 218, 178,  23,  43, 133, 154;
 150,  76, 101,   8,  38, 238,  84,  47,   7;
 117, 246, 163, 237,  69, 129,  60, 101,  41];


r (matlab) =
(:, :, 1) =
 91, 179, 236;
239, 207, 183;
102,  68, 198;
181, 191,   7;
 45, 173, 175;
 90, 221, 113;
214,   6,  98;
187, 218,  43;
150,   8,  84;
117, 237,  60
(:, :, 2) =
  2,  52,   8;
 26, 218, 158;
 18, 210, 207;
162, 196, 243;
  6, 242,  90;
 22, 167, 208;
 35, 143,  81;
167, 178, 133;
 76,  38,  47;
246,  69, 101
(:, :, 3) =
 79, 205, 181;
248,  45, 101;
118, 139, 211;
197,  40, 230;
 48, 125,  63;
112, 224, 123;
229, 138, 118;
140,  23, 154;
101, 238,   7;
163, 129,  41;


r (python) =
[[[ 91,   2,  79], [179,  52, 205], [236,   8, 181]],
 [[239,  26, 248], [207, 218,  45], [183, 158, 101]],
 [[102,  18, 118], [ 68, 210, 139], [198, 207, 211]],
 [[181, 162, 197], [191, 196,  40], [  7, 243, 230]],
 [[ 45,   6,  48], [173, 242, 125], [175,  90,  63]],
 [[ 90,  22, 112], [221, 167, 224], [113, 208, 123]],
 [[214,  35, 229], [  6, 143, 138], [ 98,  81, 118]],
 [[187, 167, 140], [218, 178,  23], [ 43, 133, 154]],
 [[150,  76, 101], [  8,  38, 238], [ 84,  47,   7]],
 [[117, 246, 163], [237,  69, 129], [ 60, 101,  41]]];


r (numpy) =
array([[[ 91,   2,  79], [179,  52, 205], [236,   8, 181]],
       [[239,  26, 248], [207, 218,  45], [183, 158, 101]],
       [[102,  18, 118], [ 68, 210, 139], [198, 207, 211]],
       [[181, 162, 197], [191, 196,  40], [  7, 243, 230]],
       [[ 45,   6,  48], [173, 242, 125], [175,  90,  63]],
       [[ 90,  22, 112], [221, 167, 224], [113, 208, 123]],
       [[214,  35, 229], [  6, 143, 138], [ 98,  81, 118]],
       [[187, 167, 140], [218, 178,  23], [ 43, 133, 154]],
       [[150,  76, 101], [  8,  38, 238], [ 84,  47,   7]],
       [[117, 246, 163], [237,  69, 129], [ 60, 101,  41]]], dtype='uint8');


r (csv) =
 91,   2,  79, 179,  52, 205, 236,   8, 181
239,  26, 248, 207, 218,  45, 183, 158, 101
102,  18, 118,  68, 210, 139, 198, 207, 211
181, 162, 197, 191, 196,  40,   7, 243, 230
 45,   6,  48, 173, 242, 125, 175,  90,  63
 90,  22, 112, 221, 167, 224, 113, 208, 123
214,  35, 229,   6, 143, 138,  98,  81, 118
187, 167, 140, 218, 178,  23,  43, 133, 154
150,  76, 101,   8,  38, 238,  84,  47,   7
117, 246, 163, 237,  69, 129,  60, 101,  41
;


r (c) =
{ 91,   2,  79, 179,  52, 205, 236,   8, 181,
 239,  26, 248, 207, 218,  45, 183, 158, 101,
 102,  18, 118,  68, 210, 139, 198, 207, 211,
 181, 162, 197, 191, 196,  40,   7, 243, 230,
  45,   6,  48, 173, 242, 125, 175,  90,  63,
  90,  22, 112, 221, 167, 224, 113, 208, 123,
 214,  35, 229,   6, 143, 138,  98,  81, 118,
 187, 167, 140, 218, 178,  23,  43, 133, 154,
 150,  76, 101,   8,  38, 238,  84,  47,   7,
 117, 246, 163, 237,  69, 129,  60, 101,  41};


p = [5, 1];
p3f = [2, 6, 7];
shortvec = [1;
 2;
 3]
points = [0, 0;
 5, 1;
 10, 2;
 15, 3;
 20, 4;
 25, 5;
 30, 6;
 35, 0;
 40, 1;
 45, 2;
 50, 3;
 55, 4;
 60, 5;
 65, 6;
 70, 0;
 75, 1;
 80, 2;
 85, 3;
 90, 4;
 95, 5];
相关推荐
千宇宙航3 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十四课——图像二值化的FPGA实现
图像处理·计算机视觉·fpga开发
橡晟3 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子3 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01053 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
PyAIExplorer4 小时前
图像亮度调整的简单实现
人工智能·计算机视觉
Striker_Eureka4 小时前
DiffDet4SAR——首次将扩散模型用于SAR图像目标检测,来自2024 GRSL(ESI高被引1%论文)
人工智能·目标检测
Rvelamen5 小时前
LLM-SECURITY-PROMPTS大模型提示词攻击测评基准
人工智能·python·安全
AI technophile5 小时前
OpenCV计算机视觉实战(15)——霍夫变换详解
人工智能·opencv·计算机视觉
JNU freshman6 小时前
计算机视觉 之 数字图像处理基础(一)
人工智能·计算机视觉
千宇宙航6 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十五课——基于sobel算子边缘检测的FPGA实现
图像处理·计算机视觉·fpga开发