实现多文件合并和去重的MapReduce作业

实现多文件合并和去重的MapReduce作业

问题描述

我们有多个文本文件,每个文件包含一些文本行。我们的目标是将这些文件合并成一个文件,并去除重复的行,最终得到一个去重后的文本文件。

输入文件A数据如下:

输入文件B数据如下:

Mapper

Mapper负责读取输入文件的内容,并将每一行文本作为键,值为空写入输出。

java 复制代码
public class MergeAndDeduplicateMapper extends Mapper<Object, Text, Text, NullWritable> {

    private Text fileLine = new Text();

    @Override
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        // 以整行文本作为 Mapper 输出的键
        fileLine.set(value);
        context.write(fileLine, NullWritable.get());
    }
}

Reducer

Reducer接收到Mapper输出的键值对,直接将键输出到文件中,实现去重操作。

java 复制代码
public class MergeAndDeduplicateReducer extends Reducer<Text, NullWritable, Text, NullWritable> {

    @Override
    public void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        // 以键直接输出,实现去重操作
        context.write(key, NullWritable.get());
    }
}

Driver程序

驱动程序负责配置和运行MapReduce作业。

java 复制代码
public class MergeAndDeduplicate {

    public static void main(String[] args) throws Exception {
        // 创建 MapReduce 任务
        Job job = Job.getInstance();
        job.setJarByClass(MergeAndDeduplicate.class);

        // 配置 Mapper 和 Reducer 类
        job.setMapperClass(MergeAndDeduplicateMapper.class);
        job.setReducerClass(MergeAndDeduplicateReducer.class);

        // 配置输出键值对类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 配置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 提交任务并等待完成
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

运行作业

要运行MapReduce作业,您需要将上述代码打包成一个可执行的Jar文件,并将其提交到Hadoop集群上运行。

powershell 复制代码
hadoop jar MergeAndDeduplicate.jar org.example.mapReduce.MergeAndDeduplicate input output

结论

通过上述MapReduce作业,我们成功地将多个文件合并成一个文件,并且去除了重复的行。MapReduce框架提供了一个高效的分布式计算解决方案,能够处理大规模的数据集,使得数据处理变得更加简单和高效。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。

相关推荐
冰茶_18 分钟前
WPF之Button控件详解
大数据·学习·microsoft·c#·wpf
心仪悦悦22 分钟前
Hadoop 和 Spark 生态系统中的核心组件
大数据·hadoop·spark
£菜鸟也有梦1 小时前
Hadoop进阶之路
大数据·hadoop·分布式
caihuayuan51 小时前
IOS 国际化词条 Python3 脚本
java·大数据·spring boot·后端·课程设计
哲讯智能科技2 小时前
无锡哲讯科技:SAP财务系统——赋能企业智慧财务管理
大数据·人工智能
boring_1113 小时前
全局id生成器生产方案
大数据·分布式·后端
yangmf20403 小时前
私有知识库 Coco AI 实战(四):打造 ES 索引参数小助手
大数据·人工智能·elasticsearch·coco ai
今天我又学废了7 小时前
Spark,集群搭建-Standalone
大数据·分布式·spark
Json_181790144807 小时前
Alibaba国际站商品详情AP接口概述,json数据示例返回参考
大数据·数据库
timi先生9 小时前
在大数据环境下,使用spingboot为Android APP推送数据方案
android·大数据