实现多文件合并和去重的MapReduce作业

实现多文件合并和去重的MapReduce作业

问题描述

我们有多个文本文件,每个文件包含一些文本行。我们的目标是将这些文件合并成一个文件,并去除重复的行,最终得到一个去重后的文本文件。

输入文件A数据如下:

输入文件B数据如下:

Mapper

Mapper负责读取输入文件的内容,并将每一行文本作为键,值为空写入输出。

java 复制代码
public class MergeAndDeduplicateMapper extends Mapper<Object, Text, Text, NullWritable> {

    private Text fileLine = new Text();

    @Override
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        // 以整行文本作为 Mapper 输出的键
        fileLine.set(value);
        context.write(fileLine, NullWritable.get());
    }
}

Reducer

Reducer接收到Mapper输出的键值对,直接将键输出到文件中,实现去重操作。

java 复制代码
public class MergeAndDeduplicateReducer extends Reducer<Text, NullWritable, Text, NullWritable> {

    @Override
    public void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        // 以键直接输出,实现去重操作
        context.write(key, NullWritable.get());
    }
}

Driver程序

驱动程序负责配置和运行MapReduce作业。

java 复制代码
public class MergeAndDeduplicate {

    public static void main(String[] args) throws Exception {
        // 创建 MapReduce 任务
        Job job = Job.getInstance();
        job.setJarByClass(MergeAndDeduplicate.class);

        // 配置 Mapper 和 Reducer 类
        job.setMapperClass(MergeAndDeduplicateMapper.class);
        job.setReducerClass(MergeAndDeduplicateReducer.class);

        // 配置输出键值对类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 配置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 提交任务并等待完成
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

运行作业

要运行MapReduce作业,您需要将上述代码打包成一个可执行的Jar文件,并将其提交到Hadoop集群上运行。

powershell 复制代码
hadoop jar MergeAndDeduplicate.jar org.example.mapReduce.MergeAndDeduplicate input output

结论

通过上述MapReduce作业,我们成功地将多个文件合并成一个文件,并且去除了重复的行。MapReduce框架提供了一个高效的分布式计算解决方案,能够处理大规模的数据集,使得数据处理变得更加简单和高效。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。

相关推荐
TM1Club8 小时前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
zhang133830890758 小时前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
电商API_180079052479 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
龙山云仓9 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
躺柒11 小时前
读数字时代的网络风险管理:策略、计划与执行04风险指引体系
大数据·网络·信息安全·数字化·网络管理·网络风险管理
独自归家的兔12 小时前
从 “局部凑活“ 到 “全局最优“:AI 规划能力的技术突破与产业落地实践
大数据·人工智能
海域云-罗鹏12 小时前
国内公司与英国总部数据中心/ERP系统互连,SD-WAN专线实操指南
大数据·数据库·人工智能
策知道13 小时前
依托政府工作报告准备省考【经验贴】
大数据·数据库·人工智能·搜索引擎·政务
Henry-SAP13 小时前
SAP(ERP) 组织结构业务视角解析
大数据·人工智能·sap·erp·sap pp
TracyCoder12315 小时前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎