实现多文件合并和去重的MapReduce作业

实现多文件合并和去重的MapReduce作业

问题描述

我们有多个文本文件,每个文件包含一些文本行。我们的目标是将这些文件合并成一个文件,并去除重复的行,最终得到一个去重后的文本文件。

输入文件A数据如下:

输入文件B数据如下:

Mapper

Mapper负责读取输入文件的内容,并将每一行文本作为键,值为空写入输出。

java 复制代码
public class MergeAndDeduplicateMapper extends Mapper<Object, Text, Text, NullWritable> {

    private Text fileLine = new Text();

    @Override
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        // 以整行文本作为 Mapper 输出的键
        fileLine.set(value);
        context.write(fileLine, NullWritable.get());
    }
}

Reducer

Reducer接收到Mapper输出的键值对,直接将键输出到文件中,实现去重操作。

java 复制代码
public class MergeAndDeduplicateReducer extends Reducer<Text, NullWritable, Text, NullWritable> {

    @Override
    public void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        // 以键直接输出,实现去重操作
        context.write(key, NullWritable.get());
    }
}

Driver程序

驱动程序负责配置和运行MapReduce作业。

java 复制代码
public class MergeAndDeduplicate {

    public static void main(String[] args) throws Exception {
        // 创建 MapReduce 任务
        Job job = Job.getInstance();
        job.setJarByClass(MergeAndDeduplicate.class);

        // 配置 Mapper 和 Reducer 类
        job.setMapperClass(MergeAndDeduplicateMapper.class);
        job.setReducerClass(MergeAndDeduplicateReducer.class);

        // 配置输出键值对类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 配置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 提交任务并等待完成
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

运行作业

要运行MapReduce作业,您需要将上述代码打包成一个可执行的Jar文件,并将其提交到Hadoop集群上运行。

powershell 复制代码
hadoop jar MergeAndDeduplicate.jar org.example.mapReduce.MergeAndDeduplicate input output

结论

通过上述MapReduce作业,我们成功地将多个文件合并成一个文件,并且去除了重复的行。MapReduce框架提供了一个高效的分布式计算解决方案,能够处理大规模的数据集,使得数据处理变得更加简单和高效。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。

相关推荐
诗旸的技术记录与分享13 小时前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
资讯分享周13 小时前
Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
大数据·gpt
G皮T15 小时前
【Elasticsearch】深度分页及其替代方案
大数据·elasticsearch·搜索引擎·scroll·检索·深度分页·search_after
TDengine (老段)15 小时前
TDengine STMT2 API 使用指南
java·大数据·物联网·时序数据库·iot·tdengine·涛思数据
用户Taobaoapi201416 小时前
母婴用品社媒种草效果量化:淘宝详情API+私域转化追踪案例
大数据·数据挖掘·数据分析
G皮T17 小时前
【Elasticsearch】检索排序 & 分页
大数据·elasticsearch·搜索引擎·排序·分页·检索·深度分页
无级程序员19 小时前
hive2服务启动报错:/tmp/hive on HDFS should be writable(不是chmod 777能解决的)
hive·hadoop·hdfs
小新学习屋21 小时前
Spark从入门到熟悉(篇三)
大数据·分布式·spark
rui锐rui21 小时前
大数据学习2:HIve
大数据·hive·学习
G皮T21 小时前
【Elasticsearch】检索高亮
大数据·elasticsearch·搜索引擎·全文检索·kibana·检索·高亮