词频统计程序

使用Hadoop MapReduce处理文本文件,Mapper负责将文本分割为单词,然后Reducer对每个单词进行计数,最后将结果写入输出文件。

java 复制代码
// 定义WordCount公共类
public class WordCount {

    // 主入口方法,处理命令行参数
    public static void main(String[] args) throws Exception {
        // 创建Hadoop配置对象
        Configuration conf = new Configuration();
        
        // 创建Job实例,设置作业名称
        Job job = Job.getInstance(conf, "word count");
        
        // 设置作业的JAR包,这里使用WordCount类所在的包
        job.setJarByClass(WordCount.class);
        
        // 设置Mapper类
        job.setMapperClass(TokenizerMapper.class);
        
        // 设置Combiner和Reducer类,这里使用同一个类,因为Reduce操作不需要排序
        job.setCombinerClass(IntSumReducer.class);
        job.setReduceClass(IntSumReducer.class);

        // 设置输出键和值的类型
        job.setOutputKeyClass(Text.class); // 输出键:单词类型,Text
        job.setOutputValueClass(IntWritable.class); // 输出值:单词计数,IntWritable

        // 将输入文件添加到作业
        FileInputFormat.addInputPath(job, new Path(args[0])); // 第一个参数是输入文件路径

        // 设置输出文件路径
        FileOutputFormat.setOutputPath(job, new Path(args[1])); // 第二个参数是输出文件路径

        // 等待作业完成,返回0表示成功,1表示失败
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    // Reducer类,统计单词的出现次数
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        // 初始化结果值为0
        private IntWritable result = new IntWritable();

        // 在reduce函数中,处理键值对,累加值
        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get(); // 获取值并累加
            }
            result.set(sum); // 设置结果值
            context.write(key, result); // 将键值对写入输出
        }
    }

    // Mapper类,进行单词分词
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
        // 声明全局变量,用于存储单个单词
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        // map函数,将文本分割成单词,每个单词与1一起写入输出
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken()); // 获取下一个单词
                context.write(word, one); // 将单词和1写入输出
            }
        }
    }
}
相关推荐
喂完待续3 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB3 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
最初的↘那颗心4 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05236 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝12 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续16 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交16 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
计艺回忆路18 小时前
从Podman开始一步步构建Hadoop开发集群
hadoop
还是大剑师兰特1 天前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
189228048611 天前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存