词频统计程序

使用Hadoop MapReduce处理文本文件,Mapper负责将文本分割为单词,然后Reducer对每个单词进行计数,最后将结果写入输出文件。

java 复制代码
// 定义WordCount公共类
public class WordCount {

    // 主入口方法,处理命令行参数
    public static void main(String[] args) throws Exception {
        // 创建Hadoop配置对象
        Configuration conf = new Configuration();
        
        // 创建Job实例,设置作业名称
        Job job = Job.getInstance(conf, "word count");
        
        // 设置作业的JAR包,这里使用WordCount类所在的包
        job.setJarByClass(WordCount.class);
        
        // 设置Mapper类
        job.setMapperClass(TokenizerMapper.class);
        
        // 设置Combiner和Reducer类,这里使用同一个类,因为Reduce操作不需要排序
        job.setCombinerClass(IntSumReducer.class);
        job.setReduceClass(IntSumReducer.class);

        // 设置输出键和值的类型
        job.setOutputKeyClass(Text.class); // 输出键:单词类型,Text
        job.setOutputValueClass(IntWritable.class); // 输出值:单词计数,IntWritable

        // 将输入文件添加到作业
        FileInputFormat.addInputPath(job, new Path(args[0])); // 第一个参数是输入文件路径

        // 设置输出文件路径
        FileOutputFormat.setOutputPath(job, new Path(args[1])); // 第二个参数是输出文件路径

        // 等待作业完成,返回0表示成功,1表示失败
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    // Reducer类,统计单词的出现次数
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        // 初始化结果值为0
        private IntWritable result = new IntWritable();

        // 在reduce函数中,处理键值对,累加值
        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get(); // 获取值并累加
            }
            result.set(sum); // 设置结果值
            context.write(key, result); // 将键值对写入输出
        }
    }

    // Mapper类,进行单词分词
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
        // 声明全局变量,用于存储单个单词
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        // map函数,将文本分割成单词,每个单词与1一起写入输出
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken()); // 获取下一个单词
                context.write(word, one); // 将单词和1写入输出
            }
        }
    }
}
相关推荐
Wang's Blog7 分钟前
Elastic Stack梳理: ElasticSearch分页与遍历技术深度解析与工程实践
大数据·elasticsearch·搜索引擎
媒体人88814 分钟前
GEO优化专家孟庆涛谈 GEO 优化:百度抖音谷歌协同抢答案主权
大数据·人工智能·搜索引擎·生成式引擎优化·geo优化
桃子叔叔24 分钟前
Prompt Engineering 完全指南:从基础到高阶技术深度解析
大数据·人工智能·prompt
老蒋新思维27 分钟前
创客匠人洞察:创始人 IP 变现的长期主义,文化根基与 AI 杠杆的双重赋能
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
试着30 分钟前
【投资学习】腾讯控股(0700.HK)
大数据·人工智能·业界资讯·腾讯
合合技术团队36 分钟前
论文解读-潜在思维链推理的全面综述
大数据·人工智能·深度学习·大模型
数据智研38 分钟前
【数据分享】浙江统计年鉴(1984-2024)
大数据·人工智能
数智研发说41 分钟前
智汇电器携手鼎捷PLM:从“制造”迈向“智造”,构建高效协同研发新范式
大数据·人工智能·设计模式·重构·制造·设计规范
larance1 小时前
spark 支持hive
hive·spark
Elastic 中国社区官方博客1 小时前
Elastic 与 Accenture 在 GenAI 数据准备方面的合作
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·aws