正交投影的矩阵(基变换与过渡矩阵的例子)

在 n n n维欧几里得空间 V V V中,有子空间 W W W. 如果用自然基 ( e i ) 1 ≤ i ≤ n (\mathbf{e}i){1\leq i \leq n} (ei)1≤i≤n,设 W = s p a n ( w 1 , ... , w d )    ( 0 < d < n ) W=\mathrm{span}(w_1, \ldots, w_d)\; (0< d < n) W=span(w1,...,wd)(0<d<n). 将这个基作Schmidt正交化(并单位化),得到 W W W的一个标准正交基 ( η 1 , ... , η d ) (\eta_1, \ldots, \eta_d) (η1,...,ηd). 将这个标准正交基扩充为 V V V的一个基: ( η 1 , ... , η d , η d + 1 , η d + 2 , ... , η n ) . (\eta_1, \ldots, \eta_d, \eta_{d+1}, \eta_{d+2}, \ldots, \eta_{n}). (η1,...,ηd,ηd+1,ηd+2,...,ηn).

假定从自然基到上述标准正交基的过渡矩阵为 T T T: 即 ( η 1 , ... , η d , η d + 1 , ... , η n ) = ( e 1 , ... , e n )   T . (\eta_1, \ldots, \eta_d, \eta_{d+1}, \ldots, \eta_{n})=(\mathbf{e_1, \ldots, e_n})\,T. (η1,...,ηd,ηd+1,...,ηn)=(e1,...,en)T.由于自然基排成的矩阵是单位方阵 I n I_n In, 所以 T T T的前 d d d列是 ( η 1 , ... , η d ) (\eta_1, \ldots, \eta_d) (η1,...,ηd), 并且 T T T是正交矩阵。

命题 :在 V V V的自然基之下,从 V V V(沿着 W ⊥ W^\perp W⊥)到 W W W的正交投影的矩阵是 P W = ( η 1 , η 2 , ... , η d ) ( η 1 ⊤ η 2 ⊤ ⋮ η d ⊤ ) P_W=(\eta_1, \eta_2, \ldots, \eta_d)\begin{pmatrix} \eta_1^\top \\ \eta_2^\top \\ \vdots \\ \eta_d^\top \end{pmatrix} PW=(η1,η2,...,ηd) η1⊤η2⊤⋮ηd⊤ . 而在标准正交基 ( η 1 , ... , η n ) (\eta_1, \ldots, \eta_n) (η1,...,ηn)之下, 从 V V V到 W W W的正交投影矩阵是 Q W = ( I d 0 ) Q_W=\begin{pmatrix} I_d & \\ & \mathbf{0} \end{pmatrix} QW=(Id0). 有等式 Q w = T − 1 P W T = T ⊤ P W T Q_w = T^{-1}P_W T=T^\top P_W T Qw=T−1PWT=T⊤PWT.

:验证 T Q W T ⊤ = P W TQ_W T^\top = P_W TQWT⊤=PW比较容易。

例: V = R 3 , w = ( 1 , 2 , 3 ) ⊤ , W = s p a n ( w ) V=\mathbb{R}^3, w=(1,2,3)^\top, W=\mathrm{span}(w) V=R3,w=(1,2,3)⊤,W=span(w). 则 η = 1 14 ( 1 , 2 , 3 ) ⊤ \eta=\frac{1}{\sqrt{14}}(1,2,3)^\top η=14 1(1,2,3)⊤. 等式 T Q W T ⊤ = P W TQ_W T^\top = P_W TQWT⊤=PW是 ( 1 14 ∗ ∗ 2 14 ∗ ∗ 3 14 ∗ ∗ ) ( 1 0 0 ) ( 1 14 2 14 3 14 ∗ ∗ ∗ ∗ ∗ ∗ ) = 1 14 ( 1 2 3 2 4 6 3 6 9 ) . \begin{pmatrix} \frac{1}{\sqrt{14}} & * & * \\ \frac{2}{\sqrt{14}} & * & * \\ \frac{3}{\sqrt{14}} & * & * \\ \end{pmatrix}\begin{pmatrix}1 & & \\ & 0 & \\ & & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{\sqrt{14}} & \frac{2}{\sqrt{14}} & \frac{3}{\sqrt{14}} \\ * & * & * \\ * & * & * \end{pmatrix}=\frac{1}{14}\begin{pmatrix}1 & 2 & 3\\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}. 14 114 214 3∗∗∗∗∗∗ 100 14 1∗∗14 2∗∗14 3∗∗ =141 123246369 .

相关推荐
JJJJ_iii3 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
Han.miracle4 小时前
数据结构——二叉树的从前序与中序遍历序列构造二叉树
java·数据结构·学习·算法·leetcode
知识分享小能手5 小时前
uni-app 入门学习教程,从入门到精通,uni-app基础扩展 —— 详细知识点与案例(3)
vue.js·学习·ui·微信小程序·小程序·uni-app·编程
●VON6 小时前
重生之我在大学自学鸿蒙开发第九天-《分布式流转》
学习·华为·云原生·harmonyos·鸿蒙
无妄无望6 小时前
docker学习(4)容器的生命周期与资源控制
java·学习·docker
Larry_Yanan9 小时前
QML学习笔记(四十二)QML的MessageDialog
c++·笔记·qt·学习·ui
能不能别报错9 小时前
K8s学习笔记(十九) K8s资源限制
笔记·学习·kubernetes
十安_数学好题速析10 小时前
倍数关系:最多能选出多少个数
笔记·学习·高考
vue学习10 小时前
docker 学习dockerfile 构建 Nginx 镜像-部署 nginx 静态网
java·学习·docker
Lynnxiaowen12 小时前
今天我们开始学习python语句和模块
linux·运维·开发语言·python·学习