可视化学习:使用WebGL绘制圆形,实现色盘

前言

在Canvas2D中实现圆形的绘制比较简单,只要调用arc指令就能在Canvas画布上绘制出一个圆形,类似的,在SVG中我们也只需要一个<circle>标签就能在页面上绘制一个圆形。那么在WebGL中我们要怎么去绘制呢?WebGL只能绘制三种形状:点、线段和三角形,它没有提供直接绘制圆形的功能,当然也无法像SVG一样使用标签,所以我们是无法直接绘制圆形曲线的,这个时候我们可以借助相关的数学知识,来实现圆形的绘制。

参数方程

相信数学基础好的小伙伴一定能很快想到,我们可以使用参数方程去获取圆形曲线上的点的坐标,只要我们收集足够多的点,再通过绘制线段的方式将这些点连接起来,就能得到接近圆的图形,从视觉上看就是一个圆形了。其实圆形就是曲线中的一个特例,所以也就是说我们还可以通过参数方程绘制其他常见的曲线,比如圆、椭圆、抛物线、正余弦曲线等等。

以下是圆的参数方程:

\[\begin{cases} x = x0 + r * cos(θ)\\ y = y0 + r * sin(θ)\\ \end{cases} \]

在圆的参数方程中,可以使用圆心坐标、半径和夹角的正余弦值来表示横纵坐标的值。

具体实现

按照这个思路,我们就可以编写代码来绘制圆形曲线了。

在正式实现之前,在HTML中准备一个Canvas:

html 复制代码
<canvas ref="webglRef" width="256" height="256"></canvas>

在之后的代码中会用到我自己之前简单封装的一个WebGL的类,只是封装了一些繁琐的创建着色器程序的步骤,封装的比较粗糙。下面就开始具体的实现。

  • 首先,定义函数获取圆形曲线的顶点集合。

    javascript 复制代码
    const TAU_SEGMENTS = 60;
    const TAU = Math.PI * 2;
    // 获得圆形曲线顶点集合
    function arc(x0, y0, radius, startAng = 0, endAng = Math.PI * 2) {
      const ang = Math.min(TAU, endAng - startAng);
      const ret = ang === TAU ? []: [[x0, y0]];
      const segments = Math.round(TAU_SEGMENTS * ang / TAU);
      for (let i = 0; i <= segments; i ++) {
        const x = x0 + radius * Math.cos(startAng + ang * i / segments);
        const y = y0 + radius * Math.sin(startAng + ang * i / segments);
        ret.push([x, y]);
      }
      return ret;
    }

    x~0~和y~0~是圆心坐标,radius是半径,startAng和endAng表示圆弧的起始角度和结束角度,对于整个圆来说,就是从0到2π,这些参数都比较好理解。

    再来看arc这个函数的内部变量,ang好理解,就是结束角度和起始角度的差值;segments表示要在圆弧上取的点的总数,如果是整个圆就取60个点。

    接着就是遍历,获取segments数量的点的坐标,并存储在ret数组中。

  • 这样,我们就可以调用arc函数来获取顶点集合了。

    javascript 复制代码
    const vertices = arc(0, 0, 0.8);

    因为在WebGL中坐标系在视口的坐标范围默认是-1到1,要在视口中看到整个圆,这个圆的半径不能超过1,所以这里半径我取0.8,圆心为(0, 0),然后获取到顶点集合。

  • 创建WebGL程序并绘制。

    WebGL部分的代码就比较简单了,首先是两段GLSL代码,和常见的实现三角形的GLSL代码没什么太大区别:

    javascript 复制代码
    const vertex = `
      attribute vec2 position;
    
      void main() {
        gl_PointSize = 1.0;
        gl_Position = vec4(position, 1, 1);
      }
    `;
    const fragment = `
      precision mediump float;
    
      void main() {
        gl_FragColor = vec4(0, 0, 0, 1);
      }
    `;

    因为通过参数方程获取到的是连续的点,所以我们可以通过gl.LINE_LOOP的绘图模式,将所有的点串联起来,这样就得到了一个视觉上的圆形曲线。

    javascript 复制代码
    const gl = webglRef.value.getContext('webgl');
    const webgl = new WebGL(gl, vertex, fragment);
    webgl.drawSimple(vertices.flat(), 2, gl.LINE_LOOP);

    具体在封装的drawSimple方法中我调用了gl.drawArrays来绘制图形。

    javascript 复制代码
    gl.drawArrays(gl.LINE_LOOP, 0, points.length / size);

实际操作下来能发现,其实绘制圆形曲线还比较简单,所以我们还可以尝试去实现色盘。

色盘是一个实心的圆,就不能通过线条的方式去绘制了,之前在《利用向量判断多边形边界》中我们有提到过,对于多边形我们可以把它们看做是由多个三角形组合而成的图形,因此我们可以对多边形进行三角剖分,也就是使用多个三角形的组合来表示一个多边形,把这些三角形都绘制到画布上就组成了多边形,而圆形我们就可以把它看做是一种特殊的多边形。

因为三角剖分算法比较复杂,我们可以直接调用现有的库来完成这个操作,之前使用的是earcut这个库,现在我们换一个叫TESS2的库,更详细的介绍可以查看它的github仓库,下面我们就调用TESS2的API来完成三角剖分操作。

javascript 复制代码
webgl.drawPolygonTess2(vertices);
// ↓↓ 
drawPolygonTess2(points, {
    color,
    rule = WINDING_ODD/*WINDING_NONZERO*/
} = {}) {
    const triangles = tess2Triangulation(points, rule);
    triangles.forEach(t => this.drawTriangle(t, {color}));
}
// ↓↓
function tess2Triangulation(points, rule = WINDING_ODD) {
    const res = tesselate({
        contours: [points.flat()],
        windingRule: rule,
        elementType: POLYGONS,
        polySize: 3,
        vertexSize: 2,
        strict: false
    });
    const triangles = [];
    for (let i = 0; i < res.elements.length; i += 3) {
        const a = res.elements[i];
        const b = res.elements[i + 1];
        const c = res.elements[i + 2];
        triangles.push([
            [res.vertices[a * 2], res.vertices[a * 2 + 1]],
            [res.vertices[b * 2], res.vertices[b * 2 + 1]],
            [res.vertices[c * 2], res.vertices[c * 2 + 1]],
        ])
    }
    return triangles;
}

这样我们就绘制了一个黑色的实心圆。

要实现色盘,我们需要使用HSV或者HSL的颜色表示形式,因为色相Hue的取值范围是0到360度,所以这两种颜色表示形式可以让我们直接把色值和角度关联起来,因此我们可以通过varying变量将坐标信息传递给片元着色器,然后在片元着色器中使用坐标信息计算hsv形式的像素色值。

glsl 复制代码
// vertex
attribute vec2 position;
varying vec2 vP;

void main() {
  gl_PointSize = 1.0;
  gl_Position = vec4(position, 1, 1);
  vP = position;
}

但是WebGL中还无法直接处理HSV的颜色表示形式,所以我们需要使用hsv2rgb函数来完成颜色向量的转换,这其中具体的转换算法我也并不是很懂,感兴趣的小伙伴可以自行研究。

glsl 复制代码
// fragment
#define PI 3.1415926535897932384626433832795
precision mediump float;

varying vec2 vP;

// hsv -> rgb
// 参数的取值范围都是 (0, 1)
vec3 hsv2rgb(vec3 c) {
  vec3 rgb = clamp(abs(mod(c.x * 6.0 + vec3(0.0, 4.0, 2.0), 6.0) - 3.0) - 1.0, 0.0, 1.0);
  rgb = rgb * rgb * (3.0 - 2.0 * rgb);
  return c.z * mix(vec3(1.0), rgb, c.y);
}

void main() {
  float x0 = 0.0;
  float y0 = 0.0;
  float h = atan(vP.y - y0, vP.x - x0);
  h = h / (PI * 2.0); // 归一化处理
  vec3 hsv_color = vec3(h, 1.0, 1.0);
  vec3 rgb_color = hsv2rgb(hsv_color);
  gl_FragColor = vec4(rgb_color, 1.0);
}

在上述代码中,我们调用atan函数计算得到以(0,0)为圆心的弧度值,再除以得到一个归一化的值,然后将这个归一化的值通过hsv2rgb函数转化RGB颜色向量。

这样我们就使用WebGL实现了一个色盘。如果我们想要颜色的过渡显得更自然,还可以设置使饱和度随着半径增大而增大。

glsl 复制代码
void main() {
  // ...
  float r = sqrt((vP.x - x0) * (vP.x - x0) + (vP.y - y0) * (vP.y - y0)); // 计算半径

  vec3 hsv_color = vec3(h, r * 1.2, 1.0);
  // ...
}

好啦,那看到这里的小伙伴应该都知道如何绘制圆形,如何实现色盘了吧,可以自己动手实践一下。

相关推荐
_oP_i14 小时前
Unity Addressables 系统处理 WebGL 打包本地资源的一种高效方式
unity·游戏引擎·webgl
新中地GIS开发老师1 天前
WebGIS和WebGL的基本概念介绍和差异对比
学习·arcgis·webgl
_oP_i2 天前
Unity 中使用 WebGL 构建并运行时使用的图片必须使用web服务器上的
前端·unity·webgl
flying robot5 天前
Three.js简化 WebGL 的使用
webgl
小彭努力中5 天前
114. 精灵模型标注场景(贴图)
前端·3d·webgl·贴图
小彭努力中5 天前
109. 工厂光源(环境贴图和环境光)
前端·深度学习·3d·webgl·贴图
小彭努力中6 天前
112. gui辅助调节光源阴影
前端·深度学习·3d·webgl
maizeman1267 天前
pyecharts地图类型
python·可视化·pyecharts
refineiks8 天前
three.js绘制宽度大于1的线,并动态新增顶点
3d·图形渲染·webgl
小彭努力中8 天前
102. 管道漫游案例
前端·3d·webgl