传统方法(OpenCV)_车道线识别

一、思路

基于OpenCV的库:对视频中的车道线进行识别

1、视频处理:视频读取

2、图像转换:图像转换为灰度图

3、噪声去除:高斯模糊对图像进行去噪,提高边缘检测的准确性

4、边缘检测:Canny算法进行边缘检测,找出图像中边缘

5、区域裁剪:定义ROI(Region of Interest,感兴趣区域),裁剪出这个区域的边缘检测结果

6、直线检测:霍夫变换对ROI区域进行直线检测,找出车道线

7、结果展示:将检测到的车道线画在原图/视频上

二、实施流程:

  1. 高斯模糊、Canny边缘检测、霍夫变换

    import numpy as np
    import cv2

    blur_ksize = 5 # 高斯模糊核大小
    canny_lthreshold = 50 # Canny边缘检测低阈值
    canny_hthreshold = 150 # Canny边缘检测高阈值

    霍夫变换参数

    rho = 1 #rho的步长,即直线到图像原点(0,0)点的距离
    theta = np.pi / 180 #theta的范围
    threshold = 15 #累加器中的值高于它时才认为是一条直线
    min_line_length = 40 #线的最短长度,比这个短的都被忽略
    max_line_gap = 20 #两条直线之间的最大间隔,小于此值,认为是一条直线

2、定义roi_mask函数,用于保留感兴趣区域,屏蔽掉图像中不需要处理的部分,例如天空、树木等,只保留路面部分,从而提高后续处理的效率和准确性。

#img是输入的图像,verticess是兴趣区的四个点的坐标(三维的数组)
def roi_mask(img, vertices):
    mask = np.zeros_like(img)   #生成与输入图像相同大小的图像,并使用0填充,图像为黑色
    mask_color = 255
    cv2.fillPoly(mask, vertices, mask_color)    #使用白色填充多边形,形成蒙板
    masked_img = cv2.bitwise_and(img, mask) #img&mask,经过此操作后,兴趣区域以外的部分被蒙住了,只留下兴趣区域的图像
    return masked_img

3、定义draw_lines函数,用于后续对检测到的车道线进行绘制图线。

# 对图像进行画线
def draw_lines(img, lines, color=[255, 255, 0], thickness=2):
    for line in lines:
        for x1, y1, x2, y2 in line:
            cv2.line(img, (x1, y1), (x2, y2), color, thickness)

4、定义hough_lines函数,用于通过霍夫变换检测出图像中的直线,然后根据这些直线执行draw_lines函数画出车道线

def hough_lines(img, rho, theta, threshold,
                min_line_len, max_line_gap):
    lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]),
                            minLineLength=min_line_len,
                            maxLineGap=max_line_gap)
    line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) #生成绘制直线的绘图板,黑底
    # draw_lines(line_img, lines)
    draw_lanes(line_img, lines)
    return line_img

5、定义draw_lanes函数,用于根据霍夫变换检测到的直线,分类、清理、拟合、绘制出车道线

def draw_lanes(img, lines, color=[255, 255, 0], thickness=8):
    left_lines, right_lines = [], []    #用于存储左边和右边的直线
    for line in lines:      #对直线进行分类
        for x1, y1, x2, y2 in line:
            k = (y2 - y1) / (x2 - x1)
            if k < 0:
                left_lines.append(line)
            else:
                right_lines.append(line)
 
    if (len(left_lines) <= 0 or len(right_lines) <= 0):
        return img
    clean_lines(left_lines, 0.1)    #弹出左侧不满足斜率要求的直线
    clean_lines(right_lines, 0.1)   #弹出右侧不满足斜率要求的直线
    left_points = [(x1, y1) for line in left_lines for x1, y1, x2, y2 in line]  #提取左侧直线族中的所有的第一个点
    left_points = left_points + [(x2, y2) for line in left_lines for x1, y1, x2, y2 in line]    #提取左侧直线族中的所有的第二个点
    right_points = [(x1, y1) for line in right_lines for x1, y1, x2, y2 in line]    #提取右侧直线族中的所有的第一个点
    right_points = right_points + [(x2, y2) for line in right_lines for x1, y1, x2, y2 in line] #提取右侧侧直线族中的所有的第二个点
    left_vtx = calc_lane_vertices(left_points, 325, img.shape[0])   #拟合点集,生成直线表达式,并计算左侧直线在图像中的两个端点的坐标
    right_vtx = calc_lane_vertices(right_points, 325, img.shape[0]) #拟合点集,生成直线表达式,并计算右侧直线在图像中的两个端点的坐标
    cv2.line(img, left_vtx[0], left_vtx[1], color, thickness)   #画出左侧直线
    cv2.line(img, right_vtx[0], right_vtx[1], color, thickness) #画出右侧直线

6、定义clean_lines函数,用于将斜率不满足要求的直线去除,即不进行绘制

#将不满足斜率要求的直线弹出
def clean_lines(lines, threshold):
    slope = [(y2 - y1) / (x2 - x1) for line in lines for x1, y1, x2, y2 in line]
    while len(lines) > 0:
        mean = np.mean(slope)   #计算斜率的平均值,因为后面会将直线和斜率值弹出
        diff = [abs(s - mean) for s in slope]    #计算每条直线斜率与平均值的差值
        idx = np.argmax(diff)     #计算差值的最大值的下标
        if diff[idx] > threshold:    #将差值大于阈值的直线弹出
            slope.pop(idx)  #弹出斜率
            lines.pop(idx)  #弹出直线
        else:
            break

7、定义calc_lane_vertices函数,用于根据给定的点集拟合一条直线,并计算这条直线在图像中的两个端点的坐标

#拟合点集,生成直线表达式,并计算直线在图像中的两个端点的坐标
def calc_lane_vertices(point_list, ymin, ymax):
    x = [p[0] for p in point_list]  #提取x
    y = [p[1] for p in point_list]  #提取y
    fit = np.polyfit(y, x, 1)   #用一次多项式x=a*y+b拟合这些点,fit是(a,b)
    fit_fn = np.poly1d(fit) #生成多项式对象a*y+b
    xmin = int(fit_fn(ymin))    #计算这条直线在图像中最左侧的横坐标
    xmax = int(fit_fn(ymax))     #计算这条直线在图像中最右侧的横坐标
    return [(xmin, ymin), (xmax, ymax)]

8、编写主函数。首先读取视频并获取每一帧,如果读取帧失败(即视频已经播放完毕),则跳出循环;接着对读取到的帧进行一系列处理,包括转换为灰度图、高斯模糊、Canny边缘检测、生成ROI掩膜、霍夫直线检测等;然后将处理后的图像与原图融合,得到最终的结果;最后显示结果图像,如果按下Esc键,则跳出循环,即关闭所有窗口

if __name__ == '__main__':
    try:
        cap = cv2.VideoCapture('./video_1.mp4')
        if (cap.isOpened()):  # 视频打开成功
            flag = 1
        else:
            flag = 0
        num = 0
        if (flag):
            while (True):
                ret,frame = cap.read()  # 读取一帧
                if ret == False:  # 读取帧失败
                    break
                gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)  #图像转换为灰度图
                blur_gray = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0, 0)  #使用高斯模糊去噪声
                edges = cv2.Canny(blur_gray, canny_lthreshold, canny_hthreshold)    #使用Canny进行边缘检测
                roi_vtx = np.array([[(0, frame.shape[0]), (460, 325),
                                     (520, 325), (frame.shape[1], frame.shape[0])]]) ##目标区域的四个点坐标,roi_vtx是一个三维的数组
                roi_edges = roi_mask(edges, roi_vtx)    #对边缘检测的图像生成图像蒙板,去掉不感兴趣的区域,保留兴趣区
                line_img = hough_lines(roi_edges, rho, theta, threshold,
                                       min_line_length, max_line_gap)   #使用霍夫直线检测,并且绘制直线
                res_img = cv2.addWeighted(frame, 0.8, line_img, 1, 0)   #将处理后的图像与原图做融合
                cv2.imshow('meet',res_img)
                if cv2.waitKey(30) & 0xFF == 27:
                    break
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    except:
        pass

# 使用环境dlcv/001

#1、
import numpy as np
import cv2

blur_ksize = 5  # 高斯模糊核大小
canny_lthreshold = 50  # Canny边缘检测低阈值
canny_hthreshold = 150  # Canny边缘检测高阈值
# 霍夫变换参数
rho = 1  # rho的步长,即直线到图像原点(0,0)点的距离
theta = np.pi / 180  # theta的范围
threshold = 15  # 累加器中的值高于它时才认为是一条直线
min_line_length = 40  # 线的最短长度,比这个短的都被忽略
max_line_gap = 20  # 两条直线之间的最大间隔,小于此值,认为是一条直线

#2、
#img是输入的图像,verticess是兴趣区的四个点的坐标(三维的数组)
def roi_mask(img, vertices):
    mask = np.zeros_like(img)   #生成与输入图像相同大小的图像,并使用0填充,图像为黑色
    mask_color = 255
    cv2.fillPoly(mask, vertices, mask_color)    #使用白色填充多边形,形成蒙板
    masked_img = cv2.bitwise_and(img, mask) #img&mask,经过此操作后,兴趣区域以外的部分被蒙住了,只留下兴趣区域的图像
    return masked_img


#3、
# 对图像进行画线
def draw_lines(img, lines, color=[255, 255, 0], thickness=2):
    for line in lines:
        for x1, y1, x2, y2 in line:
            cv2.line(img, (x1, y1), (x2, y2), color, thickness)


#4、
def hough_lines(img, rho, theta, threshold,
                min_line_len, max_line_gap):
    lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]),
                            minLineLength=min_line_len,
                            maxLineGap=max_line_gap)
    line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) #生成绘制直线的绘图板,黑底
    # draw_lines(line_img, lines)
    draw_lanes(line_img, lines)
    return line_img


#5、
def draw_lanes(img, lines, color=[255, 255, 0], thickness=8):
    left_lines, right_lines = [], []  # 用于存储左边和右边的直线
    for line in lines:  # 对直线进行分类
        for x1, y1, x2, y2 in line:
            k = (y2 - y1) / (x2 - x1)
            if k < 0:
                left_lines.append(line)
            else:
                right_lines.append(line)

    if (len(left_lines) <= 0 or len(right_lines) <= 0):
        return img
    clean_lines(left_lines, 0.1)  # 弹出左侧不满足斜率要求的直线
    clean_lines(right_lines, 0.1)  # 弹出右侧不满足斜率要求的直线
    left_points = [(x1, y1) for line in left_lines for x1, y1, x2, y2 in line]  # 提取左侧直线族中的所有的第一个点
    left_points = left_points + [(x2, y2) for line in left_lines for x1, y1, x2, y2 in line]  # 提取左侧直线族中的所有的第二个点
    right_points = [(x1, y1) for line in right_lines for x1, y1, x2, y2 in line]  # 提取右侧直线族中的所有的第一个点
    right_points = right_points + [(x2, y2) for line in right_lines for x1, y1, x2, y2 in line]  # 提取右侧侧直线族中的所有的第二个点
    left_vtx = calc_lane_vertices(left_points, 325, img.shape[0])  # 拟合点集,生成直线表达式,并计算左侧直线在图像中的两个端点的坐标
    right_vtx = calc_lane_vertices(right_points, 325, img.shape[0])  # 拟合点集,生成直线表达式,并计算右侧直线在图像中的两个端点的坐标
    cv2.line(img, left_vtx[0], left_vtx[1], color, thickness)  # 画出左侧直线
    cv2.line(img, right_vtx[0], right_vtx[1], color, thickness)  # 画出右侧直线


#6、
#将不满足斜率要求的直线弹出
def clean_lines(lines, threshold):
    slope = [(y2 - y1) / (x2 - x1) for line in lines for x1, y1, x2, y2 in line]
    while len(lines) > 0:
        mean = np.mean(slope)   #计算斜率的平均值,因为后面会将直线和斜率值弹出
        diff = [abs(s - mean) for s in slope]    #计算每条直线斜率与平均值的差值
        idx = np.argmax(diff)     #计算差值的最大值的下标
        if diff[idx] > threshold:    #将差值大于阈值的直线弹出
            slope.pop(idx)  #弹出斜率
            lines.pop(idx)  #弹出直线
        else:
            break



#7、
#拟合点集,生成直线表达式,并计算直线在图像中的两个端点的坐标
def calc_lane_vertices(point_list, ymin, ymax):
    x = [p[0] for p in point_list]  #提取x
    y = [p[1] for p in point_list]  #提取y
    fit = np.polyfit(y, x, 1)   #用一次多项式x=a*y+b拟合这些点,fit是(a,b)
    fit_fn = np.poly1d(fit) #生成多项式对象a*y+b
    xmin = int(fit_fn(ymin))    #计算这条直线在图像中最左侧的横坐标
    xmax = int(fit_fn(ymax))     #计算这条直线在图像中最右侧的横坐标
    return [(xmin, ymin), (xmax, ymax)]




#8、
if __name__ == '__main__':
    try:
        cap = cv2.VideoCapture('1.mp4')
        if (cap.isOpened()):  # 视频打开成功
            flag = 1
        else:
            flag = 0
        num = 0
        if (flag):
            while (True):
                ret,frame = cap.read()  # 读取一帧
                if ret == False:  # 读取帧失败
                    break
                gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)  #图像转换为灰度图
                blur_gray = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0, 0)  #使用高斯模糊去噪声
                edges = cv2.Canny(blur_gray, canny_lthreshold, canny_hthreshold)    #使用Canny进行边缘检测
                roi_vtx = np.array([[(0, frame.shape[0]), (460, 325),
                                     (520, 325), (frame.shape[1], frame.shape[0])]]) ##目标区域的四个点坐标,roi_vtx是一个三维的数组
                roi_edges = roi_mask(edges, roi_vtx)    #对边缘检测的图像生成图像蒙板,去掉不感兴趣的区域,保留兴趣区
                line_img = hough_lines(roi_edges, rho, theta, threshold,
                                       min_line_length, max_line_gap)   #使用霍夫直线检测,并且绘制直线
                res_img = cv2.addWeighted(frame, 0.8, line_img, 1, 0)   #将处理后的图像与原图做融合
                cv2.imshow('meet',res_img)
                if cv2.waitKey(30) & 0xFF == 27:
                    break
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    except:
        pass
# 使用环境dlcv/001



from moviepy.editor import VideoFileClip
import cv2
import numpy as np
# 高斯滤波核大小
blur_ksize = 5
# Canny边缘检测高低阈值
canny_lth = 50
canny_hth = 150
# 霍夫变换参数
rho = 1
theta = np.pi / 180
threshold = 15
min_line_len = 40
max_line_gap = 20
def process_an_image(img):
    # 1. 灰度化、滤波和Canny
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    blur_gray = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 1)
    edges = cv2.Canny(blur_gray, canny_lth, canny_hth)
    # 2. 标记四个坐标点用于ROI截取
    rows, cols = edges.shape
    points = np.array([[(0, rows), (460, 325), (520, 325), (cols, rows)]])
    # [[[0 540], [460 325], [520 325], [960 540]]]
    roi_edges = roi_mask(edges, points)
    # 3. 霍夫直线提取
    drawing, lines = hough_lines(roi_edges, rho, theta,
                                 threshold, min_line_len, max_line_gap)
    # 4. 车道拟合计算
    draw_lanes(drawing, lines)
    # 5. 最终将结果合在原图上
    result = cv2.addWeighted(img, 0.9, drawing, 0.2, 0)
    return result
def roi_mask(img, corner_points):
    # 创建掩膜
    mask = np.zeros_like(img)
    cv2.fillPoly(mask, corner_points, 255)
    masked_img = cv2.bitwise_and(img, mask)
    return masked_img
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
    # 统计概率霍夫直线变换
    lines = cv2.HoughLinesP(img, rho, theta, threshold,
                            minLineLength=min_line_len, maxLineGap=max_line_gap)
    # 新建一副空白画布
    drawing = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    # 画出直线检测结果
    # draw_lines(drawing, lines)
    return drawing, lines
def draw_lines(img, lines, color=[0, 0, 255], thickness=1):
    for line in lines:
        for x1, y1, x2, y2 in line:
            cv2.line(img, (x1, y1), (x2, y2), color, thickness)
def draw_lanes(img, lines, color=[255, 0, 0], thickness=8):
    # a. 划分左右车道
    left_lines, right_lines = [], []
    for line in lines:
        for x1, y1, x2, y2 in line:
            k = (y2 - y1) / (x2 - x1)
            if k < 0:
                left_lines.append(line)
            else:
                right_lines.append(line)
    if (len(left_lines) <= 0 or len(right_lines) <= 0):
        return
    # b. 清理异常数据
    clean_lines(left_lines, 0.1)
    clean_lines(right_lines, 0.1)
    # c. 得到左右车道线点的集合,拟合直线
    left_points = [(x1, y1) for line in left_lines for x1, y1, x2, y2 in line]
    left_points = left_points + [(x2, y2)
                                 for line in left_lines for x1, y1, x2, y2 in line]
    right_points = [(x1, y1)
                    for line in right_lines for x1, y1, x2, y2 in line]
    right_points = right_points + \
        [(x2, y2) for line in right_lines for x1, y1, x2, y2 in line]
    left_results = least_squares_fit(left_points, 325, img.shape[0])
    right_results = least_squares_fit(right_points, 325, img.shape[0])
    # 注意这里点的顺序
    vtxs = np.array(
        [[left_results[1], left_results[0], right_results[0], right_results[1]]])
    # d.填充车道区域
    cv2.fillPoly(img, vtxs, (0, 255, 0))
    # 或者只画车道线
    # cv2.line(img, left_results[0], left_results[1], (0, 255, 0), thickness)
    # cv2.line(img, right_results[0], right_results[1], (0, 255, 0), thickness)
def clean_lines(lines, threshold):
    # 迭代计算斜率均值,排除掉与差值差异较大的数据
    slope = [(y2 - y1) / (x2 - x1)
             for line in lines for x1, y1, x2, y2 in line]
    while len(lines) > 0:
        mean = np.mean(slope)
        diff = [abs(s - mean) for s in slope]
        idx = np.argmax(diff)
        if diff[idx] > threshold:
            slope.pop(idx)
            lines.pop(idx)
        else:
            break
def least_squares_fit(point_list, ymin, ymax):
    # 最小二乘法拟合
    x = [p[0] for p in point_list]
    y = [p[1] for p in point_list]
    # polyfit第三个参数为拟合多项式的阶数,所以1代表线性
    fit = np.polyfit(y, x, 1)
    fit_fn = np.poly1d(fit)  # 获取拟合的结果
    xmin = int(fit_fn(ymin))
    xmax = int(fit_fn(ymax))
    return [(xmin, ymin), (xmax, ymax)]



# 主函数:
if __name__ == "__main__":
    output = 'output4.mp4'
    # cap = cv2.VideoCapture('3.mp4')
    clip = VideoFileClip("4.mp4")
    out_clip = clip.fl_image(process_an_image)
    out_clip.write_videofile(output, audio=False)



# #8、
# if __name__ == '__main__':
#     try:
#         cap = cv2.VideoCapture('3.mp4')
#         if (cap.isOpened()):  # 视频打开成功
#             flag = 1
#         else:
#             flag = 0
#         num = 0
#         if (flag):
#             while (True):
#                 ret,frame = cap.read()  # 读取一帧
#                 if ret == False:  # 读取帧失败
#                     break
                # gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)  #图像转换为灰度图
                # blur_gray = cv2.GaussianBlur(gray, (blur_ksize, blur_ksize), 0, 0)  #使用高斯模糊去噪声
                # edges = cv2.Canny(blur_gray, canny_lthreshold, canny_hthreshold)    #使用Canny进行边缘检测
                # roi_vtx = np.array([[(0, frame.shape[0]), (460, 325),
                #                      (520, 325), (frame.shape[1], frame.shape[0])]]) ##目标区域的四个点坐标,roi_vtx是一个三维的数组
                # roi_edges = roi_mask(edges, roi_vtx)    #对边缘检测的图像生成图像蒙板,去掉不感兴趣的区域,保留兴趣区
                # line_img = hough_lines(roi_edges, rho, theta, threshold,
                #                        min_line_length, max_line_gap)   #使用霍夫直线检测,并且绘制直线
                # res_img = cv2.addWeighted(frame, 0.8, line_img, 1, 0)   #将处理后的图像与原图做融合
                # cv2.imshow('meet',res_img)
                # if cv2.waitKey(30) & 0xFF == 27:
                #     break
    #     cv2.waitKey(0)
    #     cv2.destroyAllWindows()
    # except:
    #     pass
相关推荐
成富25 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
凤枭香37 分钟前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算38 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing1 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习