LangChain-18 Caching 将回答内容进行缓存 可在内存中或数据库中持久化缓存

背景描述

可以将问答的内容缓存起来,如果是相同的问题,那么将会直接把答案返回去,可以节约费用和计算。

安装依赖

shell 复制代码
pip install -qU langchain-core langchain-openai

编写代码

我们可以通过 InMemoryCache 进行内存缓存 或者 SQLiteCache 进行持久化存储。

详细代码如下:

python 复制代码
from langchain.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain.cache import InMemoryCache
from langchain.cache import SQLiteCache


llm = ChatOpenAI(
    model="gpt-3.5-turbo",
)
# 保存在内存中
set_llm_cache(InMemoryCache())
# 也可以持久化在数据库中
# set_llm_cache(SQLiteCache(database_path=".langchain.db"))

# The first time, it is not yet in cache, so it should take longer
message1 = llm.predict("Tell me a joke")
print(f"message1: {message1}")

# The second time it is, so it goes faster
message2 = llm.predict("Tell me a joke")
print(f"message2: {message2}")

运行结果

在运行过程中,可以直观的感受到,第一次的运行速度是比较慢的,但是第二次是非常快的。

说明当中是进行缓存了,第二次直接从内存中进行返回的。

当然,如果进入后台查看API的调用情况,也会发现,只有第一次走了OpenAI的API,第二次是没有的。

shell 复制代码
➜ python3 test18.py
/Users/wuzikang/Desktop/py/langchain_test/own_learn/env/lib/python3.12/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `predict` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
  warn_deprecated(
message1: Why did the tomato turn red? Because it saw the salad dressing!
message2: Why did the tomato turn red? Because it saw the salad dressing!
相关推荐
Swizard3 小时前
别再让你的 Python 傻等了:三分钟带你通过 asyncio 实现性能起飞
python
带刺的坐椅3 小时前
迈向 MCP 集群化:Solon AI (支持 Java8+)在解决 MCP 服务可扩展性上的探索与实践
java·ai·llm·solon·mcp
zhengfei6114 小时前
AI渗透工具——基于大型模型的自主渗透测试智能体鸾鸟(LuaN1ao)
安全·ai·开源
xhxxx4 小时前
你的 AI 为什么总答非所问?缺的不是智商,是“记忆系统”
前端·langchain·llm
junlaii4 小时前
Windows 安装 claude code 教程
windows·ai
Darkershadow5 小时前
python学习之串口通信
python·学习
Elastic 中国社区官方博客5 小时前
Elasticsearch:圣诞晚餐 BBQ - 图像识别
大数据·数据库·elasticsearch·搜索引擎·ai·全文检索
CoderJia程序员甲5 小时前
GitHub 热榜项目 - 日榜(2025-12-24)
ai·开源·llm·github
3824278275 小时前
python:输出JSON
前端·python·json
也许是_6 小时前
大模型应用技术之 详解 MCP 原理
人工智能·python