从零实现诗词GPT大模型:专栏内容规划

一、前情介绍

本系列文章将从头编写一个类GPT的深度学习模型,并在诗词数据集上进行训练,从而可以进行诗词创作。

本次实现的类GPT模型,可以在kaggle上使用免费GPU进行训练,并可以在自己的电脑上进行推理,整个学习过程中不会有任何必须使用付费GPU才能训练的情况。

本系列文章虽然是以实现一个诗词创作GPT为主线,理论上你可以迁移到任何你想要的场景;并且在实现完诗词GPT后,本系列也会介绍一些Transformer在视觉方面的应用。

在介绍的最后,贴一张图展示一下学习到最后你可以达成的一个效果,如果你仔细鉴赏了以下自动创作的诗,就会发现生成的内容并不是无意义的词组拼接,而是具备连贯性和一定的意义,该诗表达了作者GPT在春暖花开的季节里酒后对家乡的思念之情(手动狗头);当然,细心的朋友可能注意到了,这首诗它还挺押韵的!

二、内容规划

从系列文章将从头进行代码编写,并且在内容中会穿插一些对基础知识的讲解,所以不必担心会有整不明白的地方。

内容规划如下:

  • 介绍一下咱们要使用的数据集,并且对数据集进行预处理。
  • 简单介绍一下GPT模型,了解GPT到底是怎么生成内容的。
  • 重点讲解GPT的核心Transformer架构和自注意力机制,让你不仅会写Transformer架构,还能对自注意力机制有一个充分的理解。
  • 学习完Transformer后,就开始编码一个类GPT的模型了,并在编写的过程中讲解GPT模型的数据处理流程。
  • 模型准备好了,还得有数据加载代码,这里会使用诗词数据集写一个符合咱们模型训练的数据加载器。
  • 准备好模型和数据集加载后,咱们就开始编写训练代码,并且在本地验证训练代码的可行性。
  • 写完训练过程还没完,还得有个测试过程,这里会一步一步实现文字生成的代码编写,在集成到训练过程中,以便咱们在训练过程中了解模型的生成能力。
  • 开始训练!这里将会介绍kaggle的使用,并且利用kaggle上免费的GPU算力来训练咱们的GPT。
  • 模型训练好后,咱们在本地搭建一个简单的web服务器,可以在网页上进行诗词创作(就像上面的效果图那样)。
  • 诗词GPT 搞定后,咱们再学习一下Transformer在视觉中的应用,并实现一下VIT。

开始第一章的学习吧!

相关推荐
WenGyyyL12 分钟前
研读论文——《用于3D工业异常检测的自监督特征自适应》
人工智能·python·深度学习·机器学习·计算机视觉·3d
Jamence1 小时前
多模态大语言模型arxiv论文略读(七十五)
人工智能·语言模型·自然语言处理
Code_流苏1 小时前
《Python星球日记》 第71天:命名实体识别(NER)与关系抽取
python·深度学习·ner·预训练语言模型·关系抽取·统计机器学习·标注方式
小众AI1 小时前
UI-TARS: 基于视觉语言模型的多模式代理
人工智能·ui·语言模型
北京地铁1号线2 小时前
卷积神经网络(CNN)前向传播手撕
人工智能·pytorch·深度学习
微凉的衣柜3 小时前
使用GRPO训练调度事件的语言模型!
语言模型·推理模型
fydw_7154 小时前
级联与端到端对话系统架构解析:以Moshi为例
语言模型
乌恩大侠4 小时前
【东枫科技】使用LabVIEW进行深度学习开发
科技·深度学习·labview
视觉语言导航5 小时前
武汉大学无人机视角下的多目标指代理解新基准!RefDrone:无人机场景指代表达理解数据集
人工智能·深度学习·无人机·具身智能
艾醒(AiXing-w)5 小时前
探索大语言模型(LLM):国产大模型DeepSeek vs Qwen,谁才是AI模型的未来?
大数据·人工智能·语言模型