将图片数据转换为张量(Go并发处理)

在Go语言中,将图片数据转换成Tensor通常需要依赖一些外部库,编写一个简单的程序,该程序批量同时处理图片,将其转换为对应的浮点数张量。

假设图片是单通道(灰度图)或者三通道(彩色图),我们将图片的每个像素值归一化到0到1之间,然后创建一个gorgonia张量。

注意sync.WaitGroup和sync.Mutex的使用

Go 复制代码
package main

import (
	"fmt"
	"image"
	"image/png"
	"os"
	"sync"

	"gorgonia.org/gorgonia"
)

func processImage(imagePath string, tensor *gorgonia.Tensor, wg *sync.WaitGroup, lock *sync.Mutex) error {
	img, err := os.Open(imagePath)
	if err != nil {
		return fmt.Errorf("error opening image file: %v", err)
	}
	defer img.Close()

	imgBounds := img.Bounds()
	img = image.NewRGBA(imgBounds)
	err = png.Decode(img, img)
	if err != nil {
		return fmt.Errorf("error decoding image: %v", err)
	}

	lock.Lock()
	defer lock.Unlock()

	for y := imgBounds.Min.Y; y < imgBounds.Max.Y; y++ {
		for x := imgBounds.Min.X; x < imgBounds.Max.X; x++ {
			r, g, b, _ := img.At(x, y).RGBA()
			tensor.SetWithShape(y, x, 0, float32(r)/255.0) // 设置红色通道
			tensor.SetWithShape(y, x, 1, float32(g)/255.0) // 设置绿色通道
			tensor.SetWithShape(y, x, 2, float32(b)/255.0) // 设置蓝色通道
		}
	}

	return nil // 没有错误发生
}

func main() {
	var wg sync.WaitGroup
	var lock sync.Mutex
	imagePaths := []string{
		"path/xcl/image1.png",
		"path/xcl/image2.png",
		"path/xcl/image3.png",
	}

	// 假设所有图片大小和通道数相同
	img, err := os.Open(imagePaths[0])
	if err != nil {
		panic(err)
	}
	defer img.Close()

	imgBounds := img.Bounds()
	tensorShape := gorgonia.WithShape(imgBounds.Dy(), imgBounds.Dx(), 3) // 假设RGB图片
	tensor := gorgonia.NewTensor(tensorShape)

	for _, imagePath := range imagePaths {
		wg.Add(1)
		go func(imagePath string, tensor *gorgonia.Tensor, wg *sync.WaitGroup, lock *sync.Mutex) {
			defer wg.Done()
			err := processImage(imagePath, tensor, wg, &lock)
			if err != nil {
				fmt.Printf("Error processing image %s: %v\n", imagePath, err)
			}
		}(imagePath, tensor, &wg, &lock)
	}

	// 等待所有goroutines完成
	wg.Wait()

	// 在这里检查是否有任何错误发生
	for _, imagePath := range imagePaths {
		fmt.Printf("Processed image: %s\n", imagePath)
	}
	fmt.Println(tensor)
}

请注意,这个例子假设图片是PNG格式的,并且是RGB彩色图片。

如果实际中,图片是其他格式或颜色模式,那需要另外再调整代码。

相关推荐
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
绕灵儿8 小时前
OpenCV通过指针裁剪图像
人工智能·opencv·计算机视觉
Java Fans8 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习
一马平川的大草原9 小时前
如何基于pdf2image实现pdf批量转换为图片
计算机视觉·pdf·文件拆分
慕卿扬9 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
lrlianmengba10 小时前
推荐一款可视化和检查原始数据的工具:RawDigger
人工智能·数码相机·计算机视觉