负荷预测 | Matlab基于TCN-LSTM-Attention单变量时间序列多步预测

目录

效果一览




基本介绍

1.负荷预测 | Matlab基于TCN-LSTM-Attention单变量时间序列多步预测;

2.单变量时间序列数据集,采用前12个时刻预测未来96个时刻的数据;

3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;

4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图;

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

Attention(注意力机制):注意力机制用于加强模型对序列中不同位置的重要性的关注。通过计算每个时间步的注意力权重,模型可以自动学习并关注序列中最相关的部分。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于TCN-LSTM-Attention单变量时间序列多步预测
python 复制代码
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end
lgraph = connectLayers(lgraph,outputName,"flatten");
lgraph = connectLayers(lgraph,"flatten","gru1");
lgraph = connectLayers(lgraph,"flatten","flip3");
lgraph = connectLayers(lgraph,"gru1","concat/in1");
lgraph = connectLayers(lgraph,"gru2","concat/in2");


%  参数设置
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.001, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
机器学习之心5 天前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测
机器学习之心21 天前
回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测
回归·多输入单输出回归预测·attention·cnn-bilstm
简简单单做算法23 天前
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
机器学习·matlab·lstm·tcn-lstm·时间卷积神经网络·ga遗传优化
Eshin_Ye1 个月前
transformer学习笔记-自注意力机制(1)
笔记·学习·transformer·attention·注意力机制
YangJZ_ByteMaster1 个月前
PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
人工智能·深度学习·3d·transformer·attention
机器学习之心2 个月前
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
人工智能·深度学习·回归·多输入单输出回归预测·attention·ooa-bitcn-bigru
LinKouun2 个月前
论文笔记 SliceGPT: Compress Large Language Models By Deleting Rows And Columns
论文阅读·人工智能·语言模型·transformer·attention·模型压缩·注意力机制
机器学习之心2 个月前
多输入多输出 | Matlab实现TCN-LSTM时间卷积神经网络结合长短期记忆神经网络多输入多输出预测
神经网络·matlab·lstm·长短期记忆神经网络·tcn-lstm·时间卷积神经网络
胖哥真不错3 个月前
Python基于TensorFlow实现双向长短时记忆循环神经网络加注意力机制回归模型(BiLSTM-Attention回归算法)项目实战
python·tensorflow·attention·项目实战·bilstm·双向长短时记忆循环神经网络·注意力机制回归模型
胖哥真不错3 个月前
Python基于TensorFlow实现双向循环神经网络GRU加注意力机制分类模型(BiGRU-Attention分类算法)项目实战
python·tensorflow·attention·项目实战·bigru·双向循环神经网络gru·注意力机制分类模型