PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
行者无疆_ty5 小时前
什么是Node.js,跟OpenCode/OpenClaw有什么关系?
人工智能·node.js·openclaw
AC赳赳老秦5 小时前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
工程师老罗5 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
xfddlm5 小时前
边缘计算_ubuntu环境下使用瑞芯微RK3576NPU推理LLM
人工智能·ubuntu·边缘计算
日晨难再5 小时前
DSO.ai:基于AI的搜索优化型EDA工具介绍
人工智能·数字ic
机器学习之心HML5 小时前
多光伏电站功率预测新思路:当GCN遇见LSTM,解锁时空预测密码,python代码
人工智能·python·lstm
JarryStudy5 小时前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
大闲在人6 小时前
10. 配送中心卡车卸货流程分析:产能利用率与利特尔法则的实践应用
人工智能·供应链管理·智能制造·工业工程
woshikejiaih6 小时前
**播客听书与有声书区别解析2026指南,适配不同场景的音频
大数据·人工智能·python·音视频
qq7422349846 小时前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程