PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
小小工匠1 分钟前
大模型开发 - 手写Manus之Tavily搜索工具:04 让AI Agent接入互联网
人工智能·搜索·tavily
TMT星球1 分钟前
豆包除夕AI互动19亿次,Seedance2.0为春晚提供技术支持
人工智能
爱编程的Zion3 分钟前
小白AI学习笔记---第一章,如何正确使用
人工智能·笔记·学习
新缸中之脑8 分钟前
构建有长期记忆的AI代理
人工智能
LedgerNinja21 分钟前
从用户规模到技术选择:一家交易平台在2025年的发展样本
人工智能
媒体人88826 分钟前
孟庆涛:生成式引擎优化(GEO)的投毒攻击防御策略研究
大数据·人工智能·搜索引擎·生成式引擎优化·geo优化
2501_9453184931 分钟前
产品经理系统学习AI的必要性与核心内容
人工智能·学习·产品经理
志栋智能33 分钟前
AI驱动的自动化运维机器人:从“数字劳动力”到“智能协作者”的进化
大数据·运维·网络·人工智能·机器人·自动化
Katecat9966338 分钟前
基于YOLO11-EfficientViT的辉长岩及其相关岩石类型计算机视觉识别分类系统_1
人工智能·计算机视觉·分类
EnCi Zheng43 分钟前
05. 文本分块策略设计
人工智能