PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
熊猫钓鱼>_>2 小时前
TensorFlow深度学习框架入门浅析
深度学习·神经网络·tensorflow·neo4j·张量·训练模型·评估模型
余俊晖2 小时前
多模态视觉语言模型增强原生分辨率继续预训练方法-COMP架构及训练方法
人工智能·语言模型·自然语言处理
运维@小兵2 小时前
使用Spring-ai实现同步响应和流式响应
java·人工智能·spring-ai·ai流式响应
玩具猴_wjh2 小时前
线性规划核心知识点
人工智能·机器学习
科学最TOP2 小时前
IJCAI25|如何平衡文本与时序信息的融合适配?
人工智能·深度学习·神经网络·机器学习·时间序列
maycho1232 小时前
探索锂电池主动均衡仿真:从开关电容到多种电路的奇妙之旅
人工智能
余俊晖2 小时前
多模态文档智能解析模型进展-英伟达NVIDIA-Nemotron-Parse-v1.1
人工智能·ocr·多模态
南太湖小蚂蚁2 小时前
通过TRAE和LLM实现电影数据查询和分析
人工智能
双翌视觉3 小时前
机器视觉赋能平板电脑OCA真空全贴合,精度、效率与智能化的三重飞跃
人工智能·机器学习·电脑
CareyWYR3 小时前
AI 把技术门槛踩碎,我们拿什么作为护城河?
人工智能