PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
ziwu15 小时前
【垃圾识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·深度学习·图像识别
Elastic 中国社区官方博客15 小时前
Elasticsearch:数据脱节如何破坏现代调查
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
却道天凉_好个秋15 小时前
OpenCV(三十八):什么是特征检测
人工智能·opencv·计算机视觉
m0_5711866016 小时前
第二十六周周报
人工智能
我不是QI16 小时前
周志华《机器学习—西瓜书》四
人工智能·机器学习
roman_日积跬步-终至千里16 小时前
【计算机视觉(8)】双视图几何基础篇:从立体视觉到极线约束
人工智能·数码相机·计算机视觉
nix.gnehc16 小时前
杂记:泛化
人工智能·机器学习
San30.16 小时前
Vue 3 + DeepSeek 实现 AI 流式对话的完整指南
前端·vue.js·人工智能
像风一样自由202016 小时前
LSTM-KNN融合模型:让AI既有记忆又会“查字典“
人工智能·rnn·lstm
祝余Eleanor16 小时前
Day32 深入理解SHAP图
人工智能·python·机器学习