PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
JoannaJuanCV7 分钟前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer7 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor43 分钟前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI2 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154463 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me073 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao3 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算4 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装4 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801404 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag