PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
CoovallyAIHub几秒前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
biubiubiu0706几秒前
微软云语音识别ASR示例Demo
人工智能·语音识别
CoovallyAIHub3 分钟前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉
大模型真好玩8 分钟前
做题王者,实战拉跨!是时候给马斯克的Grok4泼盆冷水了!(Grok 4模型详细测评报告)
人工智能·python·mcp
九章云极AladdinEdu8 分钟前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
羊八井9 分钟前
使用 Earth2Studio 和 AI 模型进行全球天气预测:太阳辐照
pytorch·python·nvidia
爱钓鱼的老毕登9 分钟前
2025编程革命:氛围编码崛起,开发者如何成为AI策展人?
人工智能·程序员·cursor
最懒的菜鸟12 分钟前
MinerU将PDF转成md文件,并分拣图片
人工智能·pdf
数字生命贾克斯13 分钟前
拆解飞书AI:知识管理不可替代,多维表格意外突围
人工智能
创小匠14 分钟前
创客匠人洞察:AI 时代创始人 IP 打造如何突破效率与价值的平衡
人工智能·网络协议·tcp/ip