PyTorch torch.nn.functional.one_hot用法解析

1.用法

在PyTorch中,我们可以使用torch.nn.functional.one_hot函数来实现One-Hot编码。下面是一个简单的例子:

python 复制代码
import torch
import torch.nn.functional as F
# 假设我们有一个包含类别标签的张量
labels = torch.tensor([0, 2, 1, 0, 2])
# 使用torch.nn.functional.one_hot进行One-Hot编码
one_hot = F.one_hot(labels, num_classes=3)
print(one_hot)

重点在于下面的两点:

2.one_hot的输入需要是非负整数张量(小数和负数都不行)

3.经过one_hot处理后张量维度的变化:

假设输入的张量维度是n,那么输出张量维度就是n+1,而且多的这一维度是加在了最后一维。例如,输入张量是1维的,经过one_hot处理后就变成了2维的。关于这最后一维具体是多少,又有两种情况:

python 复制代码
import torch
import torch.nn.functional as F

a = torch.tensor([[1,1,2]])
b = F.one_hot(a)
c = F.one_hot(a,4)
print(b.shape,c.shape)

A.以上面代码为例,如果不指定num_classes,pytorch默认将a中最大值加1作为标签类别最大数,此时最后一维就等于该最大值。例如,a中最大值是2,标签类别最大数就是2+1=3,那么b的形状就是(1,3,3)

B.如果指定了num_classes,此时最后一维就等于num_classes,那么b的形状就是(1,3,4)

其实说白了最后一维就等于num_classes,区别只在于num_classes是否被提前指定而已

相关推荐
七夜zippoe12 小时前
图神经网络实战:从社交网络到推荐系统的工业级应用
网络·人工智能·pytorch·python·神经网络·cora
啊阿狸不会拉杆12 小时前
《计算机视觉:模型、学习和推理》第 1 章 - 绪论
人工智能·python·学习·算法·机器学习·计算机视觉·模型
X54先生(人文科技)12 小时前
叙事响应:《当预言泛起涟漪——碳硅智能时代的叙事开篇》
人工智能·ai编程·ai写作
硅谷秋水13 小时前
具身智能中的生成多智体协作:系统性综述
人工智能·深度学习·机器学习·语言模型·机器人
爱吃羊的老虎13 小时前
【大模型应用】MCP (Model Context Protocol):AI界的USB接口
人工智能
本是少年13 小时前
构建 HuggingFace 图像-文本数据集指南
pytorch·transformer
用户51914958484513 小时前
curl中的TFTP实现:整数下溢导致堆内存越界读取漏洞
人工智能·aigc
老赵全栈实战13 小时前
《从零搭建RAG系统第5天:安装Ollama》
人工智能
星爷AG I13 小时前
12-4 表情识别(AGI基础理论)
人工智能·agi
Sopaco13 小时前
AI驱动的多智能体协作模式:Actor-Critic在软件开发中的应用
人工智能