[C++][算法基础]有向图求最短路径(Floyd)

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200,

1≤k≤n2

1≤m≤20000,

图中涉及边长绝对值均不超过 10000。

输入样例:
复制代码
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
复制代码
impossible
1

代码:

cpp 复制代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 10010;
int n,m,k,x,y,z;
int dist[N][N];

void floyd(){
    for(int k = 1;k <= n;k++){
        for(int i = 1;i <= n;i ++){
            for(int j = 1;j <= n;j++){
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
            }
        }
    }
}

int main(){
    cin>>n>>m>>k;
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= n;j++){
            if(i == j){
                dist[i][j] = 0;
            }else{
                dist[i][j] = 0x3f3f3f3f;
            }
        }
    }
    while(m--){
        cin>>x>>y>>z;
        dist[x][y] = min(dist[x][y], z);
    }
    floyd();
    while(k--){
        cin>>x>>y;
        if(dist[x][y] > 0x3f3f3f3f / 2){
            cout<<"impossible"<<endl;
        }else{
            cout<<dist[x][y]<<endl;
        }
    }
    return 0;
}
相关推荐
那个村的李富贵13 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
power 雀儿13 小时前
Scaled Dot-Product Attention 分数计算 C++
算法
Yvonne爱编码13 小时前
JAVA数据结构 DAY6-栈和队列
java·开发语言·数据结构·python
熬夜有啥好13 小时前
数据结构——哈希表
数据结构·散列表
琹箐14 小时前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia114 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了14 小时前
数据结构之树(Java实现)
java·算法
算法备案代理14 小时前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
赛姐在努力.15 小时前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
我能坚持多久15 小时前
【初阶数据结构01】——顺序表专题
数据结构