[C++][算法基础]有向图求最短路径(Floyd)

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200,

1≤k≤n2

1≤m≤20000,

图中涉及边长绝对值均不超过 10000。

输入样例:
复制代码
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
复制代码
impossible
1

代码:

cpp 复制代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int N = 10010;
int n,m,k,x,y,z;
int dist[N][N];

void floyd(){
    for(int k = 1;k <= n;k++){
        for(int i = 1;i <= n;i ++){
            for(int j = 1;j <= n;j++){
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
            }
        }
    }
}

int main(){
    cin>>n>>m>>k;
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= n;j++){
            if(i == j){
                dist[i][j] = 0;
            }else{
                dist[i][j] = 0x3f3f3f3f;
            }
        }
    }
    while(m--){
        cin>>x>>y>>z;
        dist[x][y] = min(dist[x][y], z);
    }
    floyd();
    while(k--){
        cin>>x>>y;
        if(dist[x][y] > 0x3f3f3f3f / 2){
            cout<<"impossible"<<endl;
        }else{
            cout<<dist[x][y]<<endl;
        }
    }
    return 0;
}
相关推荐
PAK向日葵1 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者3 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
快乐的划水a4 小时前
组合模式及优化
c++·设计模式·组合模式
地平线开发者4 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9365 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑6 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
闪电麦坤957 小时前
数据结构:迭代方法(Iteration)实现树的遍历
数据结构·二叉树·
C++、Java和Python的菜鸟7 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀7 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散1127 小时前
01数据结构-Prim算法
数据结构·算法·图论