大模型实战案例:8卡环境微调马斯克开源大模型 Grok-1

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。


汇总合集


Grok-1自开源以来,因作为高达314B参数的基础模型,且采用Rust+JAX框架构建,不适配transformers生态,导致使用其进行微调训练成本较高。

近期,Colossal-AI及时推出了解决方案,提供了更方便易用的 Python+PyTorch+HuggingFace Grok-1------grok-1-pytorch,目前模型已在HuggingFace、ModelScope上开源。

本文将分享在8卡环境下的微调grok-1-pytorch ,喜欢本文记得收藏、点赞、关注,技术交流欢迎加入我们讨论群

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群 , 想要获取最新面试题、了解最新面试动态的、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群

方式②、添加微信号:mlc2040,备注:技术交流

环境准备

bash 复制代码
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e .[llm]

微调

实验环境

  • GPU:8*A100 80G

  • 镜像:ModelScope官方镜像1.13.1版本

  • peft:0.10.0

数据集准备

Grok是base模型,因此我们使用了问题生成数据集DuReader作为训练集。该数据集约15000条,max-length设置为512,训练数据约10000条(平均长度305±92 tokens)。

模型准备

Grok模型我们使用了ColossalAI提供的版本,其中我们额外准备了符合transformers标准的tokenizer。

模型链接:

训练

由于Grok模型过大,device_map和deepspeed zero3非offload均无法运行训练,因此本次实验我们使用了LoRA+deepspeed zero3 offload模式运行训练。训练完整脚本如下:

bash 复制代码
# cd examples/pytorch/llm first
nproc_per_node=8

PYTHONPATH=../../.. \
torchrun \
    --nproc_per_node=$nproc_per_node \
    --master_port 29500 \
    llm_sft.py \
    --model_type grok-1 \
    --sft_type lora \
    --tuner_backend swift \
    --dtype bf16 \
    --output_dir output \
    --ddp_backend nccl \
    --dataset dureader-robust-zh \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 512 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_dtype bf16 \
    --lora_target_modules DEFAULT \
    --gradient_checkpointing true \
    --batch_size 2 \
    --weight_decay 0.1 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --deepspeed_config_path scripts/grok-1/lora_ddp_ds/zero3.json \
    --save_only_model true \

改脚本需要一个zero3.json文件,完整的训练文件可以在这里找到。

下面是训练过程的一些benchmark:

由于显存占用不到24G,理论上可以在RTX3090/A10环境中运行训练。

训练时长约4小时。

推理

SWIFT框架目前并不支持deepspeed推理,因此我们仍然使用transformers的device_map进行推理支持。但由于模型过大,因此部分layers会被offload到CPU上,并影响LoRA加载使推理出错,因此我们针对peft的实现进行了一定patch(原Linear在meta设备上时不迁移LoRA,并在运行时动态迁移weights)。

推理脚本如下:

bash 复制代码
# cd examples/pytorch/llm first
PYTHONPATH=../../.. \
python llm_infer.py \
    --ckpt_dir output/grok-1/vx-xxx-xxx/checkpoint-xxx \
    --dtype bf16 \
    --load_dataset_config true \
    --max_new_tokens 64 \
    --do_sample true \
    --dtype bf16 \
    --eval_human false \
    --merge_lora false \

推理结果:

bash 复制代码
[PROMPT]Task: Question Generation
Context: 我个人感觉是吕颂贤版,剧情和原著差别不大,虽然TVB演员颜值和风光没有大陆的好。但是香港特区人口和地域的限制,只能注重在演员的演技方面发挥很出色,楼主看过大陆排《笑傲江湖》吧!在台词上表现的很生硬没有香港的注重神色配台词,比如杜燕歌把吕颂贤表情和性格几乎和原著差别不大。武打几乎沿用徐克和程小东动作的风格很注重实际技巧,没有大陆版的在武打场面依靠电脑特效表现的太夸张了。李亚鹏版的武打动作和导演还是香港的元彬,大陆毕竟还是在武侠剧起步的比较晚,主要是还是靠明星大腕压阵而香港却是恰恰相反。
Answer: 吕颂贤版
Question:[OUTPUT]笑傲江湖哪个版本好看</s>

[LABELS]笑傲江湖哪个版本好看
--------------------------------------------------
[PROMPT]Task: Question Generation
Context: 这位朋友你好,女性出现妊娠反应一般是从6-12周左右,也就是女性怀孕1个多月就会开始出现反应,第3个月的时候,妊辰反应基本结束。而大部分女性怀孕初期都会出现恶心、呕吐的感觉,这些症状都是因人而异的,除非恶心、呕吐的非常厉害,才需要就医,否则这些都是刚怀孕的的正常症状。1-3个月的时候可以观察一下自己的皮肤,一般女性怀孕初期可能会产生皮肤色素沉淀或是腹壁产生妊娠纹,特别是在怀孕的后期更加明显。还有很多女性怀孕初期会出现疲倦、嗜睡的情况。怀孕三个月的时候,膀胱会受到日益胀大的子宫的压迫,容量会变小,所以怀孕期间也会有尿频的现象出现。月经停止也是刚怀孕最容易出现的症状,只要是平时月经正常的女性,在性行为后超过正常经期两周,就有可能是怀孕了。如果你想判断自己是否怀孕,可以看看自己有没有这些反应。当然这也只是多数人的怀孕表现,也有部分女性怀孕表现并不完全是这样,如果你无法确定自己是否怀孕,最好去医院检查一下。
Answer: 6-12周
Question:[OUTPUT]怀孕几个月开始反应</s>

[LABELS]怀孕多久会有反应
--------------------------------------------------

用通俗易懂方式讲解系列

相关推荐
网易独家音乐人Mike Zhou7 分钟前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
小陈phd10 分钟前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao1 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
gz7seven3 小时前
BLIP-2模型的详解与思考
大模型·llm·多模态·blip·多模态大模型·blip-2·q-former
Swift社区4 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman4 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年5 小时前
数据结构 (1)基本概念和术语
数据结构·算法
ZHOU_WUYI5 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
Dong雨5 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
如若1235 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉