用于稳健体积医疗分割的频域对抗训练

Frequency Domain Adversarial Training for Robust Volumetric Medical Segmentation

摘要

当务之急是确保深度学习模型在医疗保健等关键应用中的鲁棒性。虽然深度学习的最新进展提高了体积医学图像分割模型的性能,但由于这些模型容易受到对抗性攻击,因此无法立即部署到实际应用中。

提出了一种用于体积医学图像分割模型的 3D 频域对抗性攻击,并展示了其相对于传统输入或体素域攻击的优势。

引入了一种新的频域对抗训练方法,用于优化针对体素和频域攻击的鲁棒模型。

提出了频率一致性损失来调节我们的频域对抗训练,从而在模型在干净样本和对抗样本上的性能之间实现更好的权衡。

代码地址

本文方法

通过使用一个名为"频率扰动"的新模块扰动其频域表示来生成对抗样本。然后更新模型,同时最大限度地减少干净和对抗性扰动图像上的骰子损失。此外,我们提出了频率一致性损失以提高模型性能。

实验结果


相关推荐
大模型铲屎官1 分钟前
【操作系统-Day 46】文件系统核心探秘:深入理解连续分配与链式分配的实现与优劣
人工智能·python·深度学习·大模型·操作系统·文件系统·计算机组成原理
骚戴3 分钟前
2025 AI 生态全景:AnythingLLM、OpenRouter、LiteLLM 与 n1n.ai 深度对比
人工智能·大模型·llm·api·ai gateway
互联科技报6 分钟前
从关键词到对话:驾驭生成式AI时代的搜索新范式——GEO与SEO深度解析
大数据·人工智能
catchadmin11 分钟前
2026 年 PHP 开发者进阶 快速高效开发学习习惯
学习·php
KG_LLM图谱增强大模型22 分钟前
悬壶GPT:中医药领域大语言模型的参数高效微调
人工智能·gpt·语言模型·大模型·知识图谱
lifewange24 分钟前
AI 编程的工具有哪些?
人工智能
qq74223498430 分钟前
大模型技术全景与核心概念解析:从基础原理到AI智能体架构
人工智能·python·架构
chasemydreamidea31 分钟前
L2 书生大模型强化学习 RL 实践
人工智能·机器学习
星火开发设计31 分钟前
栈的深度解析与C++实现
开发语言·数据结构·c++·学习·知识
Coder个人博客34 分钟前
Transformers整体架构深度分析
人工智能·自动驾驶·transformer