用于稳健体积医疗分割的频域对抗训练

Frequency Domain Adversarial Training for Robust Volumetric Medical Segmentation

摘要

当务之急是确保深度学习模型在医疗保健等关键应用中的鲁棒性。虽然深度学习的最新进展提高了体积医学图像分割模型的性能,但由于这些模型容易受到对抗性攻击,因此无法立即部署到实际应用中。

提出了一种用于体积医学图像分割模型的 3D 频域对抗性攻击,并展示了其相对于传统输入或体素域攻击的优势。

引入了一种新的频域对抗训练方法,用于优化针对体素和频域攻击的鲁棒模型。

提出了频率一致性损失来调节我们的频域对抗训练,从而在模型在干净样本和对抗样本上的性能之间实现更好的权衡。

代码地址

本文方法

通过使用一个名为"频率扰动"的新模块扰动其频域表示来生成对抗样本。然后更新模型,同时最大限度地减少干净和对抗性扰动图像上的骰子损失。此外,我们提出了频率一致性损失以提高模型性能。

实验结果


相关推荐
xuehaikj3 分钟前
【深度学习】YOLOv10n-MAN-Faster实现包装盒flap状态识别与分类,提高生产效率
深度学习·yolo·分类
sponge'7 分钟前
opencv学习笔记9:基于CNN的mnist分类任务
深度学习·神经网络·cnn
用户51914958484523 分钟前
cURL变量管理中的缓冲区越界读取漏洞分析
人工智能·aigc
iFlow_AI32 分钟前
增强AI编程助手效能:使用开源Litho(deepwiki-rs)深度上下文赋能iFlow
人工智能·ai·ai编程·命令模式·iflow·iflow cli·心流ai助手
AI街潜水的八角35 分钟前
深度学习杂草分割系统1:数据集说明(含下载链接)
人工智能·深度学习·分类
TG:@yunlaoda360 云老大1 小时前
谷歌云发布 Document AI Workbench 最新功能:自定义文档拆分器实现复杂文档处理自动化
运维·人工智能·自动化·googlecloud
苍何1 小时前
国内也有 GPT 质感的 App 了,阿里做到了。
人工智能
美团技术团队1 小时前
美团 LongCat 团队发布全模态一站式评测基准UNO-Bench
人工智能
虫洞没有虫1 小时前
Go语言学习笔记(二)
笔记·学习
top_designer1 小时前
Firefly 样式参考:AI 驱动的 UI 资产“无限”生成
前端·人工智能·ui·aigc·ux·设计师