用于稳健体积医疗分割的频域对抗训练

Frequency Domain Adversarial Training for Robust Volumetric Medical Segmentation

摘要

当务之急是确保深度学习模型在医疗保健等关键应用中的鲁棒性。虽然深度学习的最新进展提高了体积医学图像分割模型的性能,但由于这些模型容易受到对抗性攻击,因此无法立即部署到实际应用中。

提出了一种用于体积医学图像分割模型的 3D 频域对抗性攻击,并展示了其相对于传统输入或体素域攻击的优势。

引入了一种新的频域对抗训练方法,用于优化针对体素和频域攻击的鲁棒模型。

提出了频率一致性损失来调节我们的频域对抗训练,从而在模型在干净样本和对抗样本上的性能之间实现更好的权衡。

代码地址

本文方法

通过使用一个名为"频率扰动"的新模块扰动其频域表示来生成对抗样本。然后更新模型,同时最大限度地减少干净和对抗性扰动图像上的骰子损失。此外,我们提出了频率一致性损失以提高模型性能。

实验结果


相关推荐
栗少17 分钟前
雅思口语高分进阶:从“中式表达”到“母语者逻辑”的深度重构
人工智能
落雨盛夏24 分钟前
深度学习|李哥考研2
人工智能·深度学习
美狐美颜sdk26 分钟前
人脸美型美颜SDK在直播平台中的实现方式与开发策略
人工智能·音视频·美颜sdk·视频美颜sdk·美狐美颜sdk
zpedu36 分钟前
软考想一次过,有一个学习衡量标准吗?
人工智能·笔记
人工智能AI技术44 分钟前
【Agent从入门到实践】25 主流向量数据库速览:Pinecone、Chroma、Milvus,本地/云端选型建议
人工智能·python
liliangcsdn1 小时前
VS Code开源LLM编程插件的调研
人工智能
xiaoli23271 小时前
DBConformer论文精读
深度学习
私域合规研究1 小时前
2026年私域的八大挑战及发展方向
大数据·人工智能
在线打码1 小时前
禅道二次开发:项目月报整合Dify工作流实现AI智能分析
人工智能·ai·禅道·工作流·dify
nihao5611 小时前
Mumu 模拟器配置host代理
人工智能