用于稳健体积医疗分割的频域对抗训练

Frequency Domain Adversarial Training for Robust Volumetric Medical Segmentation

摘要

当务之急是确保深度学习模型在医疗保健等关键应用中的鲁棒性。虽然深度学习的最新进展提高了体积医学图像分割模型的性能,但由于这些模型容易受到对抗性攻击,因此无法立即部署到实际应用中。

提出了一种用于体积医学图像分割模型的 3D 频域对抗性攻击,并展示了其相对于传统输入或体素域攻击的优势。

引入了一种新的频域对抗训练方法,用于优化针对体素和频域攻击的鲁棒模型。

提出了频率一致性损失来调节我们的频域对抗训练,从而在模型在干净样本和对抗样本上的性能之间实现更好的权衡。

代码地址

本文方法

通过使用一个名为"频率扰动"的新模块扰动其频域表示来生成对抗样本。然后更新模型,同时最大限度地减少干净和对抗性扰动图像上的骰子损失。此外,我们提出了频率一致性损失以提高模型性能。

实验结果


相关推荐
恋猫de小郭12 小时前
你知道不,你现在给 AI 用的 Agent Skills 可能毫无作用,甚至还拖后腿?
前端·人工智能·ai编程
じ☆冷颜〃12 小时前
随机微分层论:统一代数、拓扑与分析框架下的SPDE论述
笔记·python·学习·线性代数·拓扑学
Zzz 小生12 小时前
LangChain models:模型使用完全指南
人工智能·深度学习·机器学习
大力财经12 小时前
京东“月黑风高”超级盛典开放预约
人工智能
programhelp_12 小时前
特斯拉 MLE 超详细面经 + 避坑
数据结构·人工智能·算法·面试·职场和发展
躺柒13 小时前
读人工智能全球格局:未来趋势与中国位势06人类的未来(下)
大数据·人工智能·算法·ai·智能
gorgeous(๑>؂<๑)13 小时前
【ICLR26-Oral Paper-Meta】DepthLM:基于视觉语言模型的度量深度
人工智能·计算机视觉·语言模型·自然语言处理
Dev7z13 小时前
当AI学会“听诊”:心肺听诊分析系统,正在悄悄改变医疗
人工智能
池央13 小时前
atvoss:AI 处理器上的智能语音与多媒体解决方案,赋能高效实时交互
人工智能·交互
码云数智-大飞14 小时前
小程序制作平台有哪些?SaaS小程序制作平台对比评测
大数据·人工智能