用于稳健体积医疗分割的频域对抗训练

Frequency Domain Adversarial Training for Robust Volumetric Medical Segmentation

摘要

当务之急是确保深度学习模型在医疗保健等关键应用中的鲁棒性。虽然深度学习的最新进展提高了体积医学图像分割模型的性能,但由于这些模型容易受到对抗性攻击,因此无法立即部署到实际应用中。

提出了一种用于体积医学图像分割模型的 3D 频域对抗性攻击,并展示了其相对于传统输入或体素域攻击的优势。

引入了一种新的频域对抗训练方法,用于优化针对体素和频域攻击的鲁棒模型。

提出了频率一致性损失来调节我们的频域对抗训练,从而在模型在干净样本和对抗样本上的性能之间实现更好的权衡。

代码地址

本文方法

通过使用一个名为"频率扰动"的新模块扰动其频域表示来生成对抗样本。然后更新模型,同时最大限度地减少干净和对抗性扰动图像上的骰子损失。此外,我们提出了频率一致性损失以提高模型性能。

实验结果


相关推荐
睡醒了叭4 分钟前
coze-工作流-意图识别、批处理、变量聚合
人工智能·aigc
weixin_4588726121 分钟前
东华复试OJ每日3题打卡·复盘82~84
学习
prince_zxill38 分钟前
AionUi:开源本地AI协作平台
人工智能
半问1 小时前
Vibecoding:想法行不行,做出来看看
人工智能·程序人生·ai·产品运营·互联网
张3蜂1 小时前
Python pip 命令完全指南:从入门到精通
人工智能·python·pip
昌兵鼠鼠1 小时前
LeetCode Hot100 哈希
学习·算法·leetcode·哈希算法
人工智能AI酱1 小时前
【AI深究】高斯混合模型(GMM)全网最详细全流程详解与案例(附Python代码演示) | 混合模型概率密度函数、多元高斯分布概率密度函数、期望最大化(EM)算法 | 实际案例与流程 | 优、缺点分析
人工智能·python·算法·机器学习·分类·回归·聚类
Piar1231sdafa1 小时前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测
我是小疯子661 小时前
HybridA*算法:高效路径规划核心解析
人工智能·算法·机器学习
晨非辰1 小时前
【数据结构入坑指南(三.1)】--《面试必看:单链表与顺序表之争,读懂“不连续”之美背后的算法思想》
数据结构·c++·人工智能·深度学习·算法·机器学习·面试