【每日算法】理论:深度学习基础 刷题:KMP算法思想

上期文章

【每日算法】理论:常见网络架构 刷题:力扣字符串回顾

文章目录


一、上期问题

  • clip编码优缺点
  • Torch 和 Tensorflow 的区别
  • RNN
  • 1x1卷积在卷积神经网络中有什么作用
  • AIGC 存在的问题
  • AlexNet

二、本期理论问题

1、注意力机制

注意力机制是一种机制,用于在处理序列数据时动态地给予不同位置的输入不同的权重。在Transformer模型中,注意力机制通过计算查询、键和值之间的关联性来实现,从而在编码器和解码器之间传递信息并捕捉输入序列中的关键信息。自注意力机制允许模型在不同位置上关注不同程度的信息,有助于解决长距离依赖问题。

2、BatchNorm 和 LayerNorm 的区别

LN中同层神经元输入拥有相同的均值和方差,不同的输入样本有不同的均值和方差;BN中则针对不同神经元输入计算均值和方差,同一个batch中的输入拥有相同的均值和方差。

LN不依赖于batch的大小和输入sequence的深度,因此可以用于batchsize为1和RNN中对变长的输入sequence的normalize操作。由于NLP中的文本输入一般为变长,所以使用layernorm更好。

3、Bert 的参数量是怎么决定的。

Bert的参数量由其模型结构以及隐藏层的大小、层数等超参数所决定。具体来说,Bert 模型由多个 Transformer Encoder 层组成,每个 Encoder 层包含多个注意力头以及前馈神经网络层。因此,Bert 的参数量主要由这些层的数量、每层的隐藏单元数、注意力头的数量等因素决定。

4、为什么现在的大语言模型都采用Decoder only架构?

大模型从模型架构上主要分为三种:Only-encoder, Only-Decoder, Encoder-Decoder三种模型架构

  • Only-encoder:例如BERT,通过在大规模无标签文本上进行预训练,然后在下游任务上进行微调,具有强大的语言理解能力和表征能力。
  • Only-Decoder: 例如GPT,通过在大规模无标签文本上进行预训练,然后在特定任务上进行微调,具有很强的生成能力和语言理解能力。
  • Encoder-Decoder:例如T5,可以用于多种自然语言处理任务,如文本分类、机器翻译、问答等。

LLM之所以主要都用Decoder-only架构,除了训练效率和工程实现上的优势外,在理论上是因为Encoder的双向注意力会存在低秩问题,这可能会削弱模型表达能力,就生成任务而言,引入双向注意力并无实质好处。而Encoder-Decoder架构之所以能够在某些场景下表现更好,大概只是因为它多了一倍参数。所以,在同等参数量、同等推理成本下,Decoder-only架构就是最优选择了。

5、什么是梯度消失和爆炸

梯度消失是指在深度学习训练的过程中,梯度随着 BP 算法中的链式求导逐层传递逐层减小,最后趋近于0,导致对某些层的训练失效;梯度爆炸与梯度消失相反,梯度随着 BP 算法中的链式求导逐层传递逐层增大,最后趋于无穷,导致某些层无法收敛;

6、梯度消失和梯度爆炸产生的原因

出现梯度消失和梯度爆炸的问题主要是因为参数初始化不当以及激活函数选择不当造成的。其根本原因在于反向传播训练法则,前面层上的梯度是来自于后面层上梯度的乘积,属于先天不足。当训练较多层数的模型时,一般会出现梯度消失问题和梯度爆炸问题。

三、力扣刷题回顾-字符串

上期涉及题目:

本期题目:

151.翻转字符串里的单词:

  • 给定输入:一个字符串 s
  • 要求输出:反转字符串中单词的顺序

右旋字符串:

  • 给定输入:一个字符串 s 和一个正整数 k
  • 要求输出:将字符串中的后面 k 个字符移到字符串的前面

28. 实现 strStr():

  • 给定输入:两个字符串 haystack 和 needle
  • 要求输出:在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标。如果 needle 不是 haystack 的一部分,则返回 -1 。

459.重复的子字符串:

  • 给定输入:一个非空的字符串 s
  • 要求输出:检查是否可以通过由它的一个子串重复多次构成

对比分析:
151.翻转字符串里的单词右旋字符串 两道题都是字符串章节较为简单的题目,151.翻转字符串里的单词 可以采用双指针的思想解决,右旋字符串 使用字符串切片即可。28. 实现 strStr()459.重复的子字符串是两道运用KMP算法的字符串题。KMP的经典思想就是:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配。


151.翻转字符串里的单词

python 复制代码
class Solution:
    def reverseWords(self, s: str) -> str:
        lst=s.split()
        left,right=0,len(lst)-1
        while left < right:
            lst[left],lst[right] = lst[right],lst[left]
            left += 1
            right -= 1
        return " ".join(lst)

右旋字符串

python 复制代码
k=int(input())
s=input()
left=len(s)-k
right=len(s)
s=s[left:right]+s[:left]
print(s)

KMP算法

  • KMP算法是用来解决字符串匹配的问题: 在一个串中查找是否出现过另一个串。
  • KMP的经典思想: 当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配。
  • KMP中记录已经匹配的文本内容的关键是前缀表: 前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。前缀表中下标i对应的值就是记录了下标i之前(包括i)的字符串中有多大长度的相同前缀后缀。
  • 前缀表为什么可以记录下一次匹配的位置:

下标5之前这部分的字符串(也就是字符串aabaa)的最长相等的前缀 和 后缀字符串是 子字符串aa ,因为找到了最长相等的前缀和后缀,匹配失败的位置是后缀子串的后面,那么我们找到与其相同的前缀的后面重新匹配就可以了。

  • 前缀表的计算:
    长度为前1个字符的子串a,最长相同前后缀的长度为0。(注意字符串的前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串;后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。)

    长度为前2个字符的子串aa,最长相同前后缀的长度为1。

    长度为前3个字符的子串aab,最长相同前后缀的长度为0。

    以此类推: 长度为前4个字符的子串aaba,最长相同前后缀的长度为1。 长度为前5个字符的子串aabaa,最长相同前后缀的长度为2。 长度为前6个字符的子串aabaaf,最长相同前后缀的长度为0。

那么把求得的最长相同前后缀的长度就是对应前缀表的元素

28. 实现 strStr()

  • 定义next数组(前缀表):
    • 初始化
    • 定义两个指针分别遍历前缀和后缀
    • 然后分别处理前后缀相同和不同的情况
    • 更新next数组的值
  • 进行匹配
    • 获得子串的next数组
    • 定义两个指针分别遍历子串和父串
    • 依次匹配,分别处理匹配成功和匹配不成功的情况
python 复制代码
class Solution:
    def getNext(self,next,s):
        # 初始化next数组
        next[0] = 0
        # 定义两个指针i和j,j指向前缀末尾位置,i指向后缀末尾位置
        j = 0
        for i in range(1,len(s)):
            # 前后缀末尾不相同的情况,就要向前回退
            while j > 0 and s[i] != s[j]:
                j = next[j-1]
            # 前后缀相同时,就同时向后移动i 和j
            if s[i] == s[j]:
                j += 1
            # 将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度
            next[i] = j

    def strStr(self, haystack: str, needle: str) -> int:
        if len(needle) == 0:
            return 0
        next = [0] * len(needle)
        self.getNext(next,needle)
        j=0
        for i in range(len(haystack)):
            while j > 0 and haystack[i] != needle[j]:
                j = next[j-1]
            if haystack[i] == needle[j]:
                j += 1
            if j == len(needle):
                return i-len(needle)+1
        return -1

459.重复的子字符串

  • 定义next数组(前缀表):
    • 初始化
    • 定义两个指针分别遍历前缀和后缀
    • 然后分别处理前后缀相同和不同的情况
    • 更新next数组的值
  • 进行匹配
    数组长度减去最长相同前后缀的长度相当于是第一个周期的长度,也就是一个周期的长度,如果这个周期可以被整除,就说明整个数组就是这个周期的循环。
python 复制代码
class Solution:
    def getNext(self,next,s):
        # 初始化next数组
        next[0] = 0
        # 定义两个指针i和j,j指向前缀末尾位置,i指向后缀末尾位置
        j = 0
        for i in range(1,len(s)):
            # 前后缀末尾不相同的情况,就要向前回退
            while j > 0 and s[i] != s[j]:
                j = next[j-1]
            # 前后缀相同时,就同时向后移动i 和j
            if s[i] == s[j]:
                j += 1
            # 将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度
            next[i] = j


    def repeatedSubstringPattern(self, s: str) -> bool:
        if len(s) == 0:
            return False
        next = [0]*len(s)
        self.getNext(next,s)
        if next[-1] != 0 and len(s)%(len(s)-next[-1]) == 0:
            return True
        return False

参考:
代码随想录算法训练营第七天|344.反转字符串,541. 反转字符串II,卡码网:54.替换数字,151.翻转字符串里的单词,卡码网:55.右旋转字符串
代码随想录算法训练营第八天|28. 实现 strStr(),459.重复的子字符串,字符串总结,双指针回顾

相关推荐
普密斯科技4 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐17 分钟前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu13619 分钟前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
日出等日落32 分钟前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
三木吧41 分钟前
开发微信小程序的过程与心得
人工智能·微信小程序·小程序
whaosoft-1431 小时前
w~视觉~3D~合集5
人工智能
猫头虎1 小时前
新纪天工 开物焕彩:重大科技成就发布会参会感
人工智能·开源·aigc·开放原子·开源软件·gpu算力·agi
正在走向自律2 小时前
京东物流营销 Agent:智能驱动,物流新篇(13/30)
人工智能·ai agent·ai智能体·京东物流agent
程序员老冯头2 小时前
第十五章 C++ 数组
开发语言·c++·算法
南七澄江2 小时前
各种网站(学习资源及其他)
开发语言·网络·python·深度学习·学习·机器学习·ai