【信号处理】基于EEG脑电信号的自闭症预测典型方法实现

理论

自闭者主要受到遗传和环境因素的共同影响。由于自闭症是一种谱系障碍,因此每个自闭症患者都有独特的优势和挑战。自闭症患者学习、思考和解决问题的方式可以是高技能的,也可以是严峻的挑战。研究表明,高质量的早期干预可以改善学习、沟通和社交技能,以及潜在的大脑发育。然而诊断过程可能需要数年时间。本项目主要实现自闭者的早期检测(正常vs非正常),为早期筛查和干预提供及时的预警。

工具

自闭者脑电数据集

方法实现

数据加载
python 复制代码
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif,f_classif
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_score,StratifiedKFold
from sklearn.feature_selection import RFE
from sklearn.feature_selection import RFECV
from sklearn.neural_network import MLPClassifier 
from category_encoders.target_encoder import TargetEncoder
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler,RobustScaler
from category_encoders import MEstimateEncoder
from sklearn.preprocessing import LabelEncoder
from imblearn.over_sampling import RandomOverSampler
from sklearn.inspection import permutation_importance
from imblearn.over_sampling import SMOTE
from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import StackingClassifier,VotingClassifier
from sklearn.metrics import roc_auc_score, roc_curve, confusion_matrix, ConfusionMatrixDisplay

train=pd.read_csv('/Autism_Prediction/train.csv')
test=pd.read_csv('/Autism_Prediction/test.csv')
k-折交叉验证数据划分
python 复制代码
np.random.seed(1) #I'm using this because there's some
#randomness in how the selectors work, without this, in each run we get different results
kf = StratifiedKFold(n_splits=2, random_state=None,shuffle=False) #for cross validation/ random_state
# is None because shuffle is False
score=[]

for train_index, val_index in kf.split(train_set,y):
    
    #indices for train and validation sets
    X_train, X_val =train_set.iloc[train_index,:], train_set.iloc[val_index,:]
    y_train, y_val = y[train_index], y[val_index]
    
    #******************************* CLEANING ***********************************

    #for train set
    X_train.ethnicity=X_train.ethnicity.str.replace('others','Others',regex=False)
    X_train.ethnicity=X_train.ethnicity.str.replace('?','Others',regex=False)
    X_train.relation=X_train.relation.str.replace('?','Others',regex=False)
    X_train.relation=X_train.relation.str.replace('Health care professional','Others',regex=False)
    
    
    #for validation set:
    X_val.ethnicity=X_val.ethnicity.str.replace('others','Others',regex=False)
    X_val.ethnicity=X_val.ethnicity.str.replace('?','Others',regex=False)
    X_val.relation=X_val.relation.str.replace('?','Others',regex=False)
    X_val.relation=X_val.relation.str.replace('Health care professional','Others',regex=False)

  
    #***************************************ENCODING****************************************** 
    
    #FOR ENCODING USE THE TRAINING VALUES, DO NOT CALCULATE THEM AGAIN FOR THE TEST SET!
    
    le=LabelEncoder()
    for col in ['jaundice','austim']:
        
        #for the training set:
        X_train[col]=le.fit_transform(X_train[col])
        
        #for the validation set:
        X_val[col]=le.transform(X_val[col])
         

    #*********************Encoding Relation Column***************************
    
    #create an encoding map, using the training set, then implementing it on val and test sets
    rel=X_train.relation.value_counts()
    rel=dict(zip(rel.index,range(len(rel))))
    
    #for the training set:
    X_train.relation=X_train.relation.map(rel)
    
    #for the validation set: if there's a category not present in the map, we'll assign sth. to it
    X_val.relation=X_val.relation.map(rel)
    X_val.relation[X_val.relation.isna()]=len(rel)
    
    
    
    #*********************Encoding Ethnicity Column***************************
    
    #create an encoding map, using the training set, then implementing it on val and test sets
    eth=X_train.ethnicity.value_counts()
    eth=dict(zip(eth.index,range(len(eth))))
    
    #for the training set:
    X_train.ethnicity=X_train.ethnicity.map(eth)
    
    #for the validation set: if there's a category not present in the map, we'll assign sth. to it
    X_val.ethnicity=X_val.ethnicity.map(eth)
    X_val.ethnicity[X_val.ethnicity.isna()]=len(eth)
    
    
    #*****************************Encoding Country Of Res******************************
    
    #create an encoding map, using the training set, then implementing it on val and test sets
    cont=X_train.contry_of_res.value_counts()
    cont=dict(zip(cont.index,range(len(cont))))
    
    #for the training set:
    X_train.contry_of_res=X_train.contry_of_res.map(cont)
    
    #for the validation set: if there's a category not present in the map, we'll assign sth. to it
    X_val.contry_of_res=X_val.contry_of_res.map(cont)
    X_val.contry_of_res[X_val.contry_of_res.isna()]=len(cont)

    #***************************Age Grouping***********************************
    
#     age_grouper(X_train)
#     age_grouper(X_val)
            
    #*******************************Standardization*************************
    ss=StandardScaler()
    rs=RobustScaler()
    X_train[['result','age']]=rs.fit_transform(X_train[['result','age']])
    X_val[['result','age']]=rs.transform(X_val[['result','age']])
使用不同模型进行数据分类
python 复制代码
model_list = ['KNearestNeighbours', 'DecisionTree', 'LGBM','XGBRF','CatBoostClassifier','RandomForest','Logistic Regression', 'SVC' ]
k近邻模型
python 复制代码
# K Neighbors Classifier

kn_clf = KNeighborsClassifier(n_neighbors=6)
kn_clf.fit(X_train,y_train)
y_pred=pd.DataFrame(kn_clf.predict_proba(X_val))[1].values
score.append(roc_auc_score(y_val,y_pred))
    
np.array(score)

cm = confusion_matrix(y_val, kn_clf.predict(X_val))
cmd = ConfusionMatrixDisplay(cm)
cmd.plot();
决策树模型
python 复制代码
#DecissionTree
dt_clf = DecisionTreeClassifier(max_leaf_nodes=10, random_state=0, criterion='entropy')
dt_clf.fit(X_train, y_train)
y_pred=pd.DataFrame(dt_clf.predict_proba(X_val))[1].values
score.append(roc_auc_score(y_val,y_pred))
    
np.array(score)

cm = confusion_matrix(y_val, dt_clf.predict(X_val))
cmd = ConfusionMatrixDisplay(cm)
cmd.plot();
lightgbm模型
python 复制代码
#  lightgbm 
import lightgbm
lgb_clf = lightgbm.LGBMClassifier(max_depth=2, random_state=4)
lgb_clf.fit(X_train, y_train)
y_pred=pd.DataFrame(lgb_clf.predict_proba(X_val))[1].values
score.append(roc_auc_score(y_val,y_pred))
    
np.array(score)

cm = confusion_matrix(y_val, lgb_clf.predict(X_val))
cmd = ConfusionMatrixDisplay(cm)
cmd.plot();

代码获取

相关问题和项目开发,欢迎交流沟通。

相关推荐
我是小哪吒2.07 分钟前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉030711 分钟前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
荔枝吻1 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901061 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
云卓SKYDROID2 小时前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
云卓SKYDROID2 小时前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
麻雀无能为力2 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人3 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法3 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾3 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor