Streamlining CXL Adoption for Hyperscale Efficiency——论文泛读

arXiv Paper CXL论文阅读笔记整理

问题

在探索利用CXL的可组合内存系统时,需要克服超大规模下的障碍。超大规模采用基于软件的内存(解)压缩技术,减轻了内存容量、存储和网络限制,但需要更多的计算CPU周期。作为CXL社区的关键指南,制定了开创性的开放计算项目(OCP)超大规模CXL分层内存扩展器规范。如果实施,此规范将降低TCO障碍,从而在超大规模和企业级别实现多样化的CXL部署。

OCP规范呼吁采用一种可持续、透明和成本效益高的方法,在各种计算平台上使用多种内存技术压缩CXL Type 3设备上的内存。OCP规范要求在250ns内访问压缩块中的缓存线,访问压缩块的缓存线的尾延迟<1us,包括最坏情况下的查找延迟、解压缩、电源状态转换。此外,46GB/s的解压缩速度必须与4通道1867MT/s的压缩数据相匹配,具有4kB/1kB的块。但现有的解决方案无法满足这些要求。

本文方法

本文提出了一个CXL集成解决方案,与OCP规范保持一致,引入了一种节能、可扩展、硬件加速、无损压缩内存CXL层。通过在缓存线粒度上实现专有的(解)压缩算法,以及开源LZ4算法的双硬件加速器实现,在纳秒内提供2-3倍的CXL内存压缩,为最终客户提供20-25%的TCO降低,而不需要额外的物理插槽。

在本文的讨论中,确定了CXL社区内的协作创新领域,以加快CXL分层内存扩展的软件/硬件进步。此外,深入研究了Pooled部署中尚未解决的挑战,并探索了潜在的解决方案,共同致力于使CXL应用于超大规模。

总结

本文针对将CXL应用于超大规模的需求,介绍了一种CXL集成解决方案,与现有OCP超大规模CXL分层内存扩展器规范相符。引入了一种节能、可扩展、硬件加速、无损压缩内存CXL层。通过在缓存线粒度上实现专有的(解)压缩算法,以及开源LZ4算法的双硬件加速器实现,在纳秒内提供2-3倍的CXL内存压缩,为最终客户提供20-25%的TCO降低,同时不需要额外的物理插槽。

相关推荐
CV-杨帆9 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
李加号pluuuus11 小时前
【论文阅读】Diffuse and Disperse: Image Generation with Representation Regularization
论文阅读
张较瘦_11 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能
berling0011 小时前
【论文阅读 | CVPR 2023 |CDDFuse:基于相关性驱动的双分支特征分解的多模态图像融合】
论文阅读
李加号pluuuus11 小时前
【论文阅读】Masked Autoencoders Are Effective Tokenizers for Diffusion Models
论文阅读
berling001 天前
【论文阅读 | IF 2025 | COMO:用于多模态目标检测的跨 Mamba 交互与偏移引导融合】
论文阅读·人工智能·目标检测
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 开源软件中的GenAI自白:开发者如何用、项目如何管、代码质量受何影响?
论文阅读·人工智能·软件工程
dundunmm2 天前
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(4)
论文阅读·大模型·llm·rag·检索增强生成·评估标准
CV-杨帆3 天前
论文阅读:arxiv 2025 A Survey on Data Contamination for Large Language Models
论文阅读·人工智能·语言模型
Jamence3 天前
多模态大语言模型arxiv论文略读(157)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记