Streamlining CXL Adoption for Hyperscale Efficiency——论文泛读

arXiv Paper CXL论文阅读笔记整理

问题

在探索利用CXL的可组合内存系统时,需要克服超大规模下的障碍。超大规模采用基于软件的内存(解)压缩技术,减轻了内存容量、存储和网络限制,但需要更多的计算CPU周期。作为CXL社区的关键指南,制定了开创性的开放计算项目(OCP)超大规模CXL分层内存扩展器规范。如果实施,此规范将降低TCO障碍,从而在超大规模和企业级别实现多样化的CXL部署。

OCP规范呼吁采用一种可持续、透明和成本效益高的方法,在各种计算平台上使用多种内存技术压缩CXL Type 3设备上的内存。OCP规范要求在250ns内访问压缩块中的缓存线,访问压缩块的缓存线的尾延迟<1us,包括最坏情况下的查找延迟、解压缩、电源状态转换。此外,46GB/s的解压缩速度必须与4通道1867MT/s的压缩数据相匹配,具有4kB/1kB的块。但现有的解决方案无法满足这些要求。

本文方法

本文提出了一个CXL集成解决方案,与OCP规范保持一致,引入了一种节能、可扩展、硬件加速、无损压缩内存CXL层。通过在缓存线粒度上实现专有的(解)压缩算法,以及开源LZ4算法的双硬件加速器实现,在纳秒内提供2-3倍的CXL内存压缩,为最终客户提供20-25%的TCO降低,而不需要额外的物理插槽。

在本文的讨论中,确定了CXL社区内的协作创新领域,以加快CXL分层内存扩展的软件/硬件进步。此外,深入研究了Pooled部署中尚未解决的挑战,并探索了潜在的解决方案,共同致力于使CXL应用于超大规模。

总结

本文针对将CXL应用于超大规模的需求,介绍了一种CXL集成解决方案,与现有OCP超大规模CXL分层内存扩展器规范相符。引入了一种节能、可扩展、硬件加速、无损压缩内存CXL层。通过在缓存线粒度上实现专有的(解)压缩算法,以及开源LZ4算法的双硬件加速器实现,在纳秒内提供2-3倍的CXL内存压缩,为最终客户提供20-25%的TCO降低,同时不需要额外的物理插槽。

相关推荐
s1ckrain1 小时前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
Catching Star4 小时前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上4 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
s1ckrain16 小时前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
张较瘦_1 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
北京地铁1号线2 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 软件架构中自然问题主动辅助研究:从挑战到解决方案
论文阅读·人工智能·软件工程
有Li3 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_3 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
selia10783 天前
[论文阅读] Neural Architecture Search: Insights from 1000 Papers
论文阅读