Streamlining CXL Adoption for Hyperscale Efficiency——论文泛读

arXiv Paper CXL论文阅读笔记整理

问题

在探索利用CXL的可组合内存系统时,需要克服超大规模下的障碍。超大规模采用基于软件的内存(解)压缩技术,减轻了内存容量、存储和网络限制,但需要更多的计算CPU周期。作为CXL社区的关键指南,制定了开创性的开放计算项目(OCP)超大规模CXL分层内存扩展器规范。如果实施,此规范将降低TCO障碍,从而在超大规模和企业级别实现多样化的CXL部署。

OCP规范呼吁采用一种可持续、透明和成本效益高的方法,在各种计算平台上使用多种内存技术压缩CXL Type 3设备上的内存。OCP规范要求在250ns内访问压缩块中的缓存线,访问压缩块的缓存线的尾延迟<1us,包括最坏情况下的查找延迟、解压缩、电源状态转换。此外,46GB/s的解压缩速度必须与4通道1867MT/s的压缩数据相匹配,具有4kB/1kB的块。但现有的解决方案无法满足这些要求。

本文方法

本文提出了一个CXL集成解决方案,与OCP规范保持一致,引入了一种节能、可扩展、硬件加速、无损压缩内存CXL层。通过在缓存线粒度上实现专有的(解)压缩算法,以及开源LZ4算法的双硬件加速器实现,在纳秒内提供2-3倍的CXL内存压缩,为最终客户提供20-25%的TCO降低,而不需要额外的物理插槽。

在本文的讨论中,确定了CXL社区内的协作创新领域,以加快CXL分层内存扩展的软件/硬件进步。此外,深入研究了Pooled部署中尚未解决的挑战,并探索了潜在的解决方案,共同致力于使CXL应用于超大规模。

总结

本文针对将CXL应用于超大规模的需求,介绍了一种CXL集成解决方案,与现有OCP超大规模CXL分层内存扩展器规范相符。引入了一种节能、可扩展、硬件加速、无损压缩内存CXL层。通过在缓存线粒度上实现专有的(解)压缩算法,以及开源LZ4算法的双硬件加速器实现,在纳秒内提供2-3倍的CXL内存压缩,为最终客户提供20-25%的TCO降低,同时不需要额外的物理插槽。

相关推荐
zenpluck4 小时前
RTAB-Map学习记录(1)--论文阅读
c++·论文阅读·学习·机器人
DuHz6 小时前
汽车雷达高级信号处理和建模技术简介——文章精读(上)
linux·论文阅读·人工智能·汽车·信号处理
YMWM_9 小时前
论文阅读“OpenVLA: An Open-Source Vision-Language-Action Model“
论文阅读·vla
pzx_0011 天前
【论文阅读】Attention Is All You Need
论文阅读·算法
zenpluck1 天前
GS-SLAM论文阅读--HI-SLAM2
论文阅读
有Li2 天前
解剖学引导的全身PET-CT乳腺癌分割与跨模态自对齐/文献速递-基于深度学习的图像配准与疾病诊断
论文阅读·人工智能·深度学习·文献·医学生
s1ckrain2 天前
【论文阅读】Towards Learning a Generalist Model for Embodied Navigation
论文阅读·多模态·具身智能
有Li3 天前
用于CBCT到CT合成的纹理保留扩散模型/文献速递-基于人工智能的医学影像技术
论文阅读·人工智能·深度学习·计算机视觉·文献
CV-杨帆3 天前
论文阅读:arixv 2026 Reasoning Models Generate Societies of Thought
论文阅读
YMWM_3 天前
论文阅读“MV-UMI: A Scalable Multi-View Interface for Cross-Embodiment Learning“
论文阅读·umi