【目标检测论文解读复现NO.36】基于改进 YOLOv8 的轻量化小麦病害检测方法

前言
此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。

一、摘要

为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进 YOLOv8 的轻量 化小麦病害检测方法。首先,使用 PP-LCNet 模型替换 YOLOv8 网络结构的骨干网络,并在骨干网络层引入深度可分离 卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网 络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特 征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高 模型对重要特征的提取能力;最后,使用 Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大 田环境下所采集的小麦病害数据集,改进后模型的参数量及模型大小相比原 YOLOv8n 基线模型分别降低了 12.5 和 11.3 个百分点,同时精确度(precision)及平均精度均值(mean average precision,mAP)相较于原模型分别提高了 4.1 和 2.5 个百分点,优于其他对比目标检测算法,可为小麦病害检测无人机等移动端检测装备的部署和应用提供参考。

二、网络模型及核心创新点

这篇文章改进点都比较简单,实验结果较好,不仅轻量化了同时精度还提高了。创新点方面就四个比较简单。

**注:**论文原文出自 马超伟,张浩,马新明,等. 基于改进 YOLOv8 的轻量化小麦病害检测方法[J]. 农业工程学报,2024,40(5):187-195. doi: 10.11975/j.issn.1002-6819.202309211.

解读的系列文章,本人已进行创新点代码复现。

相关推荐
微学AI4 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆16 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤19 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创21 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao32 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子41 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人1 小时前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm