【目标检测论文解读复现NO.36】基于改进 YOLOv8 的轻量化小麦病害检测方法

前言
此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。

一、摘要

为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进 YOLOv8 的轻量 化小麦病害检测方法。首先,使用 PP-LCNet 模型替换 YOLOv8 网络结构的骨干网络,并在骨干网络层引入深度可分离 卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网 络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特 征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高 模型对重要特征的提取能力;最后,使用 Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大 田环境下所采集的小麦病害数据集,改进后模型的参数量及模型大小相比原 YOLOv8n 基线模型分别降低了 12.5 和 11.3 个百分点,同时精确度(precision)及平均精度均值(mean average precision,mAP)相较于原模型分别提高了 4.1 和 2.5 个百分点,优于其他对比目标检测算法,可为小麦病害检测无人机等移动端检测装备的部署和应用提供参考。

二、网络模型及核心创新点

这篇文章改进点都比较简单,实验结果较好,不仅轻量化了同时精度还提高了。创新点方面就四个比较简单。

**注:**论文原文出自 马超伟,张浩,马新明,等. 基于改进 YOLOv8 的轻量化小麦病害检测方法[J]. 农业工程学报,2024,40(5):187-195. doi: 10.11975/j.issn.1002-6819.202309211.

解读的系列文章,本人已进行创新点代码复现。

相关推荐
ar01231 小时前
AR远程协助作用
人工智能·ar
北京青翼科技1 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航2 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授2 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪3 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06163 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor3 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES3 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67894 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者4 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能