【神经网络基础辨析】什么是神经网络的主干(backbone)、颈部(neck)和头部(head)网络

在神经网络中,通常将网络分为三个部分:骨干网络(Backbone)、颈部网络(Neck)、和头部网络(Head)。

骨干网络(Backbone)

骨干网络通常是神经网络的主要部分,负责从原始输入数据中提取特征。它通常由多个卷积层、池化层等基本组件构成,具有不同的深度和复杂度。

  • 主要作用:将输入数据进行特征提取和抽象,将原始数据转换为更具有表征性的特征表示。

颈部网络(Neck)

颈部网络位于骨干网络和头部网络之间,通常用于对从骨干网络提取的特征进行进一步处理和整合。 它可以包括各种操作,如特征融合、特征降维、特征增强等。

  • 主要作用:在不同层次上整合和融合特征,以提高网络的表示能力,并帮助网络更好地适应不同的任务。

目标检测中常用的特征金字塔结构就是一个典型的颈部网络。

头部网络(Head)

头部网络位于颈部网络之后,通常用于执行特定的任务,如分类、检测、回归、分割等。 它负责将从骨干网络和颈部网络中提取的特征转换为最终的输出。

头部网络的结构和设计取决于具体的任务,例如分类任务可能包括全连接层和softmax激活函数,而回归任务可能包括全连接层和线性激活函数。

以目标检测为例

  1. 骨干网络(Backbone)

骨干网络通常选择一些常用的卷积神经网络(如ResNet、MobileNet、EfficientNet等)作为基础,用于从原始图像中提取特征。

例如,可以使用一个预训练的ResNet骨干网络,将输入图像传入该网络,通过多个卷积和池化层逐渐提取图像的特征,得到一系列的特征图。

  1. 颈部网络(Neck)

颈部网络位于骨干网络之后,用于对骨干网络提取的特征进行进一步处理和整合。

一个常见的颈部网络结构是特征金字塔网络(Feature Pyramid Network,FPN),它通过在不同层次上进行特征融合,生成多尺度的特征图,以增强模型对不同尺度目标的检测能力。

  1. 头部网络(Head)

头部网络负责对从颈部网络得到的特征进行任务特定的处理,如目标检测中的类别分类和边界框回归。

例如,在Faster R-CNN模型中,头部网络可能包括一个分类子网络(用于预测物体类别)和一个回归子网络(用于预测边界框坐标)。

总结

分层结构的设计使得神经网络具有灵活性和可扩展性,可以根据不同的任务和数据集进行调整和修改。通常,骨干网络是由预训练模型提供的,而颈部网络和头部网络则可以根据具体的任务进行调整和定制。

相关推荐
Elastic 中国社区官方博客26 分钟前
ES|QL 在 9.2:智能查找连接和时间序列支持
大数据·数据库·人工智能·sql·elasticsearch·搜索引擎·全文检索
齐齐大魔王32 分钟前
深度学习(三)
人工智能·深度学习
Pluchon40 分钟前
硅基计划4.0 算法 FloodFill算法
java·算法·leetcode·决策树·逻辑回归·深度优先·图搜索算法
一个帅气昵称啊42 分钟前
Net AI智能体开源框架NetCoreKevin为企业AI智能体系统Saas信息化建设赋能-开启智能应用的无限可能
人工智能·开源
yzx9910131 小时前
卷积神经网络(CNN):深度学习的视觉革命者
人工智能·机器学习
路边草随风1 小时前
python 调用 spring ai sse mcp
人工智能·python·spring
菜鸟233号1 小时前
力扣347. 前k个高频元素 java实现
算法
Cher ~1 小时前
【协议】ICMP
网络·网络协议
深圳市快瞳科技有限公司1 小时前
宠物识别算法在AI摄像头的应用实践:从多宠识别到行为分析
人工智能·智能硬件·宠物
ziwu1 小时前
【鱼类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别