机器学习学 - 监督学习 - 多项式回归与决策树回归

机器学习学习笔记 - 监督学习 - 多项式回归与决策树回归

一、多项式回归

多项式回归是线性回归的一种扩展,用于处理样本特征与样本值之间存在非线性关系的情况。当数据之间的关系并非简单的线性关系时,线性回归可能无法得到很好的拟合效果。此时,可以考虑使用多项式回归,通过引入特征的高次项(如平方项、立方项等)来增加模型的复杂度,以捕获数据中的非线性变化。

多项式回归的原理是假定样本特征与观测值之间呈现非线性关系,例如 y = ax^3 + bx^2 + cx + d。在实际应用中,需要确定多项式的阶数,即特征的最高次幂。阶数过高可能导致过拟合,而阶数过低可能无法充分捕获数据的非线性关系。因此,选择合适的阶数是一个重要的步骤。

多项式回归的实现通常包括三个步骤:多项式处理、归一化处理和线性回归。多项式处理是将原始特征转换为多项式特征,归一化处理是为了消除不同特征之间的量纲差异,最后通过线性回归模型来拟合数据。为了简化操作,可以使用工具如sklearn中的PolynomialFeatures来进行多项式特征的构建。

二、决策树回归

决策树回归是决策树算法在回归问题中的应用。与分类问题不同,回归问题的目标变量是连续的数值。决策树回归通过构建一个树形结构来预测目标变量的值。

在决策树回归中,每个内部节点表示一个特征上的判断条件,每个分支代表一个判断结果的输出,每个叶子节点代表一个预测值。构建决策树的过程是通过递归地将空间划分为多个不重叠的区域,每个区域对应一个预测值。预测值通常是根据该区域内样本的平均值或中位数得出的。

为了处理大量的划分空间,决策树回归常使用递归二分法来简化划分过程。递归二分法意味着树的每次分裂都是以二叉树的形式进行。这种方法有助于减少计算量,提高模型的效率。

需要注意的是,决策树回归可能会出现过拟合的问题。为了解决这个问题,可以通过剪枝技术来简化模型,降低过拟合的风险。此外,还可以通过调整模型的复杂度来控制过拟合与欠拟合之间的平衡。

总结:

多项式回归和决策树回归都是监督学习中用于处理回归问题的有效方法。多项式回归通过引入特征的高次项来捕获数据中的非线性关系,适用于特征与目标变量之间存在复杂关系的情况。决策树回归则通过构建树形结构来进行预测,具有直观易懂、易于实现等优点。在实际应用中,可以根据问题的特点和数据的性质来选择合适的回归方法。

相关推荐
Coovally AI模型快速验证33 分钟前
YOLO11全解析:从原理到实战,全流程体验下一代目标检测
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·yolo11
机器学习之心2 小时前
回归预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络多输入单输出回归预测
神经网络·matlab·回归·cnn-lstm
是十一月末2 小时前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
百流2 小时前
scala基础学习_运算符
开发语言·学习·scala
百流2 小时前
scala基础学习(数据类型)-数组
开发语言·学习·scala
虾球xz3 小时前
游戏引擎学习第61天
java·学习·游戏引擎
山顶夕景3 小时前
【ML】机器学习中常见的25个数学公式
人工智能·数学·机器学习
Crossoads3 小时前
【汇编语言】外中断(一)—— 外中断的魔法:PC机键盘如何触发计算机响应
android·开发语言·数据库·深度学习·机器学习·计算机外设·汇编语言