100290. 使矩阵满足条件的最少操作次数

https://leetcode.cn/problems/minimum-number-of-operations-to-satisfy-conditions/description/

正难则反。

暴力的遍历每一修改的情况,0-9;根据前一列的状态进行转移过来,

下面是状态转移方程
f ( i , j ) = m a x ( f ( i , j ) , f ( i + 1 , k ) + c n t ( i , k ) ) k ! = j ; f(i, j) = max(f(i, j),f(i+1, k)+cnt(i, k)) k!=j; f(i,j)=max(f(i,j),f(i+1,k)+cnt(i,k))k!=j;
c n t ( i , j ) :第 i 列值为 j 的个数; cnt(i, j):第i列值为j的个数; cnt(i,j):第i列值为j的个数;

最后直接 n ∗ m − m a x ( f [ 0 ] ) n*m-max(f[0]) n∗m−max(f[0]) 。

cpp 复制代码
class Solution {
public:
    int minimumOperations(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int>> cnt(n, vector<int>(10,0));
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                cnt[j][grid[i][j]]++;
            }
        }
        vector<vector<int>> dp(n, vector<int>(10, 0));
        for(int i=n-1;i>=0;i--){
            for(int j=0;j<10;j++){
                if(i == n-1){
                    dp[i][j] = cnt[i][j];
                }else{
                    for(int k = 0;k<10;k++){
                        if(k == j) continue;
                        dp[i][j] = max(dp[i][j],dp[i+1][k]+cnt[i][j]); 
                    }
                }
            }
        }
        return n*m-*max_element(dp[0].begin(), dp[0].end());
    }
};
相关推荐
人肉推土机13 小时前
Planning Agent:基于大模型的动态规划与ReAct机制,实现复杂问题自适应执行求解
大模型·动态规划·react·planning agent
呆呆的小鳄鱼15 小时前
牛客:HJ24 合唱队[华为机考][最长递增子集][动态规划]
算法·华为·动态规划
lizz312 天前
GAMES101 lec2-数学基础1(线性代数)
线性代数·游戏引擎·图形渲染
云云3213 天前
亚矩阵云手机:破解 Yandex 广告平台多账号风控难题的利器
网络·科技·线性代数·智能手机·矩阵
Tiny番茄3 天前
46. 携带研究材料(01背包二维数组)
算法·动态规划
我想静静wwwwww3 天前
74.搜索二维矩阵
数据结构·算法·矩阵
快去睡觉~3 天前
力扣73:矩阵置零
算法·leetcode·矩阵
chao_7894 天前
动态规划题解_零钱兑换【LeetCode】
python·算法·leetcode·动态规划
我.佛.糍.粑4 天前
Shusen Wang推荐系统学习 --召回 矩阵补充 双塔模型
人工智能·学习·机器学习·矩阵·推荐算法
爱吃涮毛肚的肥肥(暂时吃不了版)4 天前
剑指offer——模拟:顺时针打印矩阵
算法·leetcode·矩阵