100290. 使矩阵满足条件的最少操作次数

https://leetcode.cn/problems/minimum-number-of-operations-to-satisfy-conditions/description/

正难则反。

暴力的遍历每一修改的情况,0-9;根据前一列的状态进行转移过来,

下面是状态转移方程
f ( i , j ) = m a x ( f ( i , j ) , f ( i + 1 , k ) + c n t ( i , k ) ) k ! = j ; f(i, j) = max(f(i, j),f(i+1, k)+cnt(i, k)) k!=j; f(i,j)=max(f(i,j),f(i+1,k)+cnt(i,k))k!=j;
c n t ( i , j ) :第 i 列值为 j 的个数; cnt(i, j):第i列值为j的个数; cnt(i,j):第i列值为j的个数;

最后直接 n ∗ m − m a x ( f [ 0 ] ) n*m-max(f[0]) n∗m−max(f[0]) 。

cpp 复制代码
class Solution {
public:
    int minimumOperations(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int>> cnt(n, vector<int>(10,0));
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                cnt[j][grid[i][j]]++;
            }
        }
        vector<vector<int>> dp(n, vector<int>(10, 0));
        for(int i=n-1;i>=0;i--){
            for(int j=0;j<10;j++){
                if(i == n-1){
                    dp[i][j] = cnt[i][j];
                }else{
                    for(int k = 0;k<10;k++){
                        if(k == j) continue;
                        dp[i][j] = max(dp[i][j],dp[i+1][k]+cnt[i][j]); 
                    }
                }
            }
        }
        return n*m-*max_element(dp[0].begin(), dp[0].end());
    }
};
相关推荐
我是咸鱼不闲呀2 小时前
力扣Hot100系列19(Java)——[动态规划]总结(上)(爬楼梯,杨辉三角,打家劫舍,完全平方数,零钱兑换)
java·leetcode·动态规划
xhbaitxl6 小时前
算法学习day39-动态规划
学习·算法·动态规划
_OP_CHEN8 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
xhbaitxl8 小时前
算法学习day38-动态规划
学习·算法·动态规划
芷栀夏9 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
种时光的人18 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_21 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
2501_924878731 天前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
lbb 小魔仙1 天前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗1 天前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵