100290. 使矩阵满足条件的最少操作次数

https://leetcode.cn/problems/minimum-number-of-operations-to-satisfy-conditions/description/

正难则反。

暴力的遍历每一修改的情况,0-9;根据前一列的状态进行转移过来,

下面是状态转移方程
f ( i , j ) = m a x ( f ( i , j ) , f ( i + 1 , k ) + c n t ( i , k ) ) k ! = j ; f(i, j) = max(f(i, j),f(i+1, k)+cnt(i, k)) k!=j; f(i,j)=max(f(i,j),f(i+1,k)+cnt(i,k))k!=j;
c n t ( i , j ) :第 i 列值为 j 的个数; cnt(i, j):第i列值为j的个数; cnt(i,j):第i列值为j的个数;

最后直接 n ∗ m − m a x ( f [ 0 ] ) n*m-max(f[0]) n∗m−max(f[0]) 。

cpp 复制代码
class Solution {
public:
    int minimumOperations(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int>> cnt(n, vector<int>(10,0));
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                cnt[j][grid[i][j]]++;
            }
        }
        vector<vector<int>> dp(n, vector<int>(10, 0));
        for(int i=n-1;i>=0;i--){
            for(int j=0;j<10;j++){
                if(i == n-1){
                    dp[i][j] = cnt[i][j];
                }else{
                    for(int k = 0;k<10;k++){
                        if(k == j) continue;
                        dp[i][j] = max(dp[i][j],dp[i+1][k]+cnt[i][j]); 
                    }
                }
            }
        }
        return n*m-*max_element(dp[0].begin(), dp[0].end());
    }
};
相关推荐
witAI11 小时前
游戏竞技动态漫制作2025指南,如何打造高质量动态漫作品
动态规划
星火开发设计13 小时前
二维数组:矩阵存储与多维数组的内存布局
开发语言·c++·人工智能·算法·矩阵·函数·知识
weixin_3077791315 小时前
面向通用矩阵乘法(GEMM)负载的GPU建模方法:原理、实现与多场景应用价值
运维·人工智能·线性代数·矩阵·gpu算力
程序员-King.15 小时前
day166—递归—多边形三角剖分的最低得分(LeetCode-1039)
算法·leetcode·深度优先·动态规划·递归
AI科技星15 小时前
光的几何起源:从螺旋时空到量子现象的完全统一
开发语言·人工智能·线性代数·算法·机器学习
SeatuneWrite18 小时前
2025动态漫剧本工具推荐,助力创作高效便捷
动态规划
程序员-King.19 小时前
day161—动态规划—最长递增子序列(LeetCode-300)
算法·leetcode·深度优先·动态规划·递归
小雨下雨的雨20 小时前
触手可及的微观世界:基于 Flutter 的 3D 血细胞交互教学应用开发
flutter·3d·华为·矩阵·交互·harmonyos·鸿蒙系统
2501_9011478320 小时前
组合总和IV——动态规划与高性能优化学习笔记
学习·算法·面试·职场和发展·性能优化·动态规划·求职招聘
好奇龙猫20 小时前
【大学院-筆記試験練習:线性代数和数据结构(15)】
数据结构·线性代数