mxnet.gluon.rnn及mxnet.symbol实现LSTM教程

基于mxnet.symbol的基本使用以及模型加载与保存
mxnet基本使用以及模型加载与保存
mxnet.symbolRNN-GRU-LSTM-Bi官网教程
基于mxnet的LSTM实现(mx.rnn.LSTMCell+symbol)

基于mxnet.gluon.rnn的基本使用以及模型加载与保存
LSTM Mxnet Implementation-手写
mxnet.gluon.rnn.LSTM中文教程
mxnet.gluon.rnn.GRU官网教程

模型导出

python 复制代码
import mxnet as mx
hidden_size = 128
num_layer = 2
word_emb_dim = 128
seq_len = 64
layer = mx.gluon.rnn.GRU(hidden_size, num_layer, bidirectional=True, )
layer.initialize()
# seq_len = 5 batch_size = 3 input_size = 128
input = mx.nd.random.uniform(shape=(seq_len, 3, word_emb_dim))
# by default zeros are used as begin state
output = layer(input)
# manually specify begin state.
# num_layers = 6 batch_size = 3 num_hidden = 128
h0 = mx.nd.random.uniform(shape=(num_layer*2, 3, hidden_size))
output, hn = layer(input, h0)
# 模型保存
layer.export('model')
# 模型加载
sym = mx.sym.load('model-symbol.json')
mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None)
mod.bind(data_shapes=[('data', (5, 3, hidden_size))])
mod.load_params('model-0000.params')
print('Load Successfully!')

MXNet/Gluon:网络和参数的存取方式

相关推荐
sniper_fandc1 天前
深度学习基础—循环神经网络的梯度消失与解决
人工智能·rnn·深度学习
shuyeah1 天前
LSTM结构原理
人工智能·rnn·lstm
夜猫程序猿1 天前
RNN中的梯度消失与梯度爆炸问题
rnn·深度学习
YRr YRr1 天前
如何解决RNN在处理深层序列数据时遇到的如梯度消失、长期以来等问题
人工智能·rnn·lstm
Sout xza4 天前
HuggingFace情感分析任务微调
人工智能·python·rnn·分类
nbatop54 天前
rnn/lstm 项目实战
人工智能·rnn·lstm
YRr YRr5 天前
LSTM:解决梯度消失与长期依赖问题
人工智能·rnn·lstm
chusheng18405 天前
Python 使用 LSTM 进行情感分析:处理文本序列数据的指南
开发语言·python·lstm
IT猿手5 天前
基于双向长短期记忆网络(BiLSTM)的时间序列数据预测,15个输入1个输出,可以更改数据集,MATLAB代码
开发语言·深度学习·机器学习·matlab·lstm·bilstm
阡之尘埃5 天前
Python数据分析案例62——基于MAGU-LSTM的时间序列预测(记忆增强门控单元)
人工智能·python·深度学习·机器学习·数据分析·lstm·时间序列预测