机器学习之sklearn基础教程

Sklearn是一个基于Python的开源机器学习库,它具有简单易用、功能强大的特点,广泛应用于数据挖掘、数据分析以及数据科学领域。本篇博客将为您介绍Sklearn的基础知识,帮助您快速上手Sklearn。

1. 安装Sklearn

首先,确保您的计算机已安装Python环境。然后,通过pip命令安装Sklearn:

bash 复制代码
pip install -U scikit-learn

2. Sklearn核心API

Sklearn的核心API包括以下几个部分:

2.1 Estimator(估计器)

Estimator是Sklearn中所有算法的基础,无论是分类、回归还是聚类等任务,都可以通过Estimator实现。Estimator的主要方法有:

  • fit(X, y):用于训练模型,其中X是特征数据,y是目标数据(对于无监督学习,y参数不需要)。
  • predict(X):用于预测,返回预测结果。
  • score(X, y):用于评估模型性能,返回一个介于0和1之间的分数,分数越高,表示模型性能越好。

2.2 Transformer(转换器)

Transformer用于数据预处理和数据转换,它们通常用于修改或转换数据集的特征。常见的Transformer有:

  • StandardScaler:标准化数据,使其具有零均值和单位方差。
  • MinMaxScaler:将数据缩放到给定的范围(例如0到1)。
  • PCA:主成分分析,用于降维。

2.3 Pipeline(管道)

Pipeline用于将多个Estimator和Transformer串联起来,形成一个复杂的模型。通过Pipeline,可以方便地将多个步骤组合在一起,确保数据预处理和模型训练的一致性。

2.4 Model Selection(模型选择)

Sklearn提供了多种模型选择工具,如交叉验证、网格搜索等,用于选择最优模型和参数。

2.5 Dataset(数据集)

Sklearn内置了一些常用的数据集,如iris、digits等,方便用户快速上手和测试。

3. 示例:使用Sklearn实现线性回归

接下来,我们以线性回归为例,演示如何使用Sklearn实现一个简单的机器学习模型。

首先,导入所需的库和模块:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

生成模拟数据:

python 复制代码
# 生成随机数据
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

创建线性回归模型并训练:

python 复制代码
# 创建线性回归模型
lin_reg = LinearRegression()
# 训练模型
lin_reg.fit(X_train, y_train)
# 预测
y_pred = lin_reg.predict(X_test)
# 评估模型
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: ", mse)

绘制结果:

python 复制代码
# 绘制数据点
plt.scatter(X, y, color='blue', label='Data')
# 绘制回归线
plt.plot(X, lin_reg.predict(X), color='red', label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

运行上述代码,您将得到一个线性回归模型,并绘制出数据点和回归线。通过这个简单的示例,您已经了解了如何使用Sklearn实现机器学习模型。

相关推荐
九章云极AladdinEdu3 小时前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
feifeikon3 小时前
SFT与Lora
人工智能·深度学习·机器学习
马特说3 小时前
金融时间序列机器学习训练前的数据格式验证系统设计与实现
python·机器学习·金融
zhangfeng11335 小时前
机器学习 YOLOv5手绘电路图识别 手绘电路图自动转换为仿真软件(如LT Spice)可用的原理图,避免人工重绘
人工智能·yolo·机器学习
小牛头#10 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
kngines14 小时前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
网安INF15 小时前
深度学习中批标准化与神经网络调优
人工智能·深度学习·神经网络·机器学习
爱思德学术17 小时前
中国计算机学会(CCF)推荐学术会议-B(计算机体系结构/并行与分布计算/存储系统):SOCC 2025
网络协议·机器学习·云计算·边缘计算
巴伦是只猫17 小时前
【机器学习笔记 Ⅲ】1 无监督学习
笔记·学习·机器学习
蓝婷儿18 小时前
Python 机器学习核心入门与实战进阶 Day 7 - 复盘 + 综合实战挑战
python·机器学习