李沐65_注意力分数——自学笔记

Additive Attention

等价于将key和value合并起来后放入到一个隐藏大小为h输出大小为1的单隐藏层

总结

1.注意力分数是query和key的相似度,注意力权重是分数的softmax结果

2.两种常见的分数计算:

(1)将query和key合并起来进入一个单输出单隐藏层的MLP

(2)直接将query和key做内积

注意力打分函数

python 复制代码
!pip install d2l
python 复制代码
import math
import torch
from torch import nn
from d2l import torch as d2l

masked_softmax函数 实现了这样的掩蔽softmax操作(masked softmax operation), 其中任何超出有效长度的位置都被掩蔽并置为0。

python 复制代码
def masked_softmax(X, valid_lens):
    """通过在最后一个轴上掩蔽元素来执行softmax操作"""
    # X:3D张量,valid_lens:1D或2D张量
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)

考虑由两个2X4

矩阵表示的样本, 这两个样本的有效长度分别为2

和3

。 经过掩蔽softmax操作,超出有效长度的值都被掩蔽为0。

python 复制代码
masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
tensor([[[0.3505, 0.6495, 0.0000, 0.0000],
         [0.5069, 0.4931, 0.0000, 0.0000]],

        [[0.2469, 0.4668, 0.2863, 0.0000],
         [0.2865, 0.3008, 0.4127, 0.0000]]])

同样,也可以使用二维张量,为矩阵样本中的每一行指定有效长度。

python 复制代码
masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))
tensor([[[1.0000, 0.0000, 0.0000, 0.0000],
         [0.2102, 0.3264, 0.4634, 0.0000]],

        [[0.4785, 0.5215, 0.0000, 0.0000],
         [0.1783, 0.1803, 0.3615, 0.2800]]])

additive attention

python 复制代码
class AdditiveAttention(nn.Module):
    """加性注意力"""
    def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
        super(AdditiveAttention, self).__init__(**kwargs)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
        self.w_v = nn.Linear(num_hiddens, 1, bias=False)
        self.dropout = nn.Dropout(dropout)

    def forward(self, queries, keys, values, valid_lens):
        queries, keys = self.W_q(queries), self.W_k(keys)
        # 在维度扩展后,
        # queries的形状:(batch_size,查询的个数,1,num_hidden)
        # key的形状:(batch_size,1,"键-值"对的个数,num_hiddens)
        # 使用广播方式进行求和
        features = queries.unsqueeze(2) + keys.unsqueeze(1)
        features = torch.tanh(features)
        # self.w_v仅有一个输出,因此从形状中移除最后那个维度。
        # scores的形状:(batch_size,查询的个数,"键-值"对的个数)
        scores = self.w_v(features).squeeze(-1)
        self.attention_weights = masked_softmax(scores, valid_lens)
        # values的形状:(batch_size,"键-值"对的个数,值的维度)
        return torch.bmm(self.dropout(self.attention_weights), values)

用一个小例子来演示上面的AdditiveAttention类, 其中查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小), 实际输出为(2,1,20)

、(2,10,2)

和(2,10,4)

。 注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)。

python 复制代码
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(
    2, 1, 1)
valid_lens = torch.tensor([2, 6])

attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
                              dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)
tensor([[[ 2.0000,  3.0000,  4.0000,  5.0000]],

        [[10.0000, 11.0000, 12.0000, 13.0000]]], grad_fn=<BmmBackward0>)

管加性注意力包含了可学习的参数,但由于本例子中每个键都是相同的, 所以注意力权重是均匀的,由指定的有效长度决定

python 复制代码
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')

缩放点积注意力

(scaled dot-product attention)评分函数

python 复制代码
class DotProductAttention(nn.Module):
    """缩放点积注意力"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,"键-值"对的个数,d)
    # values的形状:(batch_size,"键-值"对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # 设置transpose_b=True为了交换keys的最后两个维度
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)

为了演示上述的DotProductAttention类, 我们使用与先前加性注意力例子中相同的键、值和有效长度。 对于点积操作,我们令查询的特征维度与键的特征维度大小相同。

python 复制代码
queries = torch.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
attention(queries, keys, values, valid_lens)
tensor([[[ 2.0000,  3.0000,  4.0000,  5.0000]],

        [[10.0000, 11.0000, 12.0000, 13.0000]]])

与加性注意力演示相同,由于键包含的是相同的元素, 而这些元素无法通过任何查询进行区分,因此获得了均匀的注意力权重。

python 复制代码
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
                  xlabel='Keys', ylabel='Queries')
相关推荐
FreedomLeo135 分钟前
Python机器学习笔记(十三、k均值聚类)
python·机器学习·kmeans·聚类
星光樱梦36 分钟前
32. 线程、进程与协程
python
阿正的梦工坊36 分钟前
深入理解 PyTorch 的 view() 函数:以多头注意力机制(Multi-Head Attention)为例 (中英双语)
人工智能·pytorch·python
Ainnle40 分钟前
GPT-O3:简单介绍
人工智能
OceanBase数据库官方博客1 小时前
向量检索+大语言模型,免费搭建基于专属知识库的 RAG 智能助手
人工智能·oceanbase·分布式数据库·向量数据库·rag
测试者家园1 小时前
ChatGPT助力数据可视化与数据分析效率的提升(一)
软件测试·人工智能·信息可视化·chatgpt·数据挖掘·数据分析·用chatgpt做软件测试
西猫雷婶1 小时前
python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形
开发语言·python·opencv
海绵波波1072 小时前
flask后端开发(10):问答平台项目结构搭建
后端·python·flask
赵谨言2 小时前
基于python网络爬虫的搜索引擎设计
爬虫·python·搜索引擎