Spark运行流程及架构设计

  • spark中一个应用程序application会在任务控制节点 上启动一个Driver程序,并且这个Driver程序会创建一个SparkContext对象(类似于mapreduce中的applicationManager)。该对象有三个任务,1是向资源管理器clusterManager注册(类似mapreduce中的resourcemanager),2是向资源管理器clusterManager申请运行资源,3是根据应用程序RDD间的依赖关系构建多个DAG对象(多个作业job,作业 是Spark中实际执行的计算任务,而DAG则是表示这些计算任务执行计划的数据结构),通过DAG调度器得到多个阶段(任务集),再通过任务调度器得到多个任务。刚才SparkContex向资源管理器申请了资源,该资源不会直接分给SC,而是会直接分配资源给工作节点上的executor进程并启动该进程,executor进程同样两项任务,1是通过心跳告知资源管理器自己的运行状况(就像mapreduce中nodemanager会向resourcemanager报告自己的运行状况。),2是向sparkcontex申请任务并将执行结果返回给SC。
  • application构成:1个任务控制节点+n个工作job(DAG)
  • 运行架构:任务控制节点Driver、工作节点、进程executor、集群管理器clusterManager
  • 对以上内容总结如下:
  1. Driver程序和SparkContext
    • Spark应用程序确实会在任务控制节点(通常是集群中的某个节点)上启动一个Driver程序。
    • Driver程序会创建一个SparkContext对象,这是Spark应用程序的入口点。
  2. 注册与资源申请
    • SparkContext首先会向资源管理器(如YARN的ResourceManager或Spark Standalone的Master)注册,这样资源管理器就知道这个应用程序已经启动并且需要资源。
    • 接着,SparkContext会向资源管理器申请资源来启动Executor进程。这些资源通常包括CPU核数和内存大小。
  3. DAG(Directed Acyclic Graph)构建与调度
    • 根据应用程序中的RDD操作,Spark会构建一个或多个DAG(有向无环图),这些DAG表示了RDD之间的依赖关系。
    • DAG调度器(DAGScheduler)会将DAG切分成多个阶段(Stages),每个阶段包含一组可以并行执行的任务(Tasks)。
    • 任务调度器(TaskScheduler)会负责将任务分配给Executor进程来执行。
  4. Executor进程
    • Executor进程是在工作节点(Worker Nodes)上启动的,它们负责执行具体的计算任务。
    • Executor进程通过心跳(Heartbeat)机制与Driver程序通信,告知自己的状态,如资源使用情况、任务执行进度等。
    • Executor进程会向Driver程序请求任务,并在完成后将结果返回给Driver程序。

**一个应用程序通过单个SparkContext与集群交互,它向clustermanager申请资源后,资源管理器会启动n个工作结点上的多个executor进程,这些进程向sparkcontext申请任务来执行,这些任务 来自不同的job 的不同阶段,所以说job之间是并行计算的。

相关推荐
Light605 小时前
点燃变革:领码SPARK融合平台如何重塑OA,开启企业智慧协同新纪元?
大数据·分布式·spark
Guheyunyi6 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
写代码的【黑咖啡】6 小时前
如何在大数据数仓中搭建数据集市
大数据·分布式·spark
华清远见成都中心7 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
梦里不知身是客118 小时前
flume防止数据丢失的方法
大数据·flume
SoleMotive.8 小时前
kafka选型
分布式·kafka
鹏说大数据9 小时前
数据治理项目实战系列6-数据治理架构设计实战,流程 + 工具双架构拆解
大数据·数据库·架构
小二·10 小时前
MyBatis基础入门《十五》分布式事务实战:Seata + MyBatis 实现跨服务数据一致性
分布式·wpf·mybatis
AI逐月11 小时前
Git 彻底清除历史记录
大数据·git·elasticsearch
天远API12 小时前
Java后端进阶:处理多数据源聚合API —— 以天远小微企业报告为例
大数据·api