利用机器学习进行图像分类:以TensorFlow和Keras为例

当使用 TensorFlow 和 Keras 进行图像分类时,常用的方法是使用卷积神经网络(Convolutional Neural Network,CNN)。以下是一个简单的图像分类示例,使用 TensorFlow 和 Keras 来训练一个 CNN 模型对手写数字进行分类。

python 复制代码
# 导入所需的库
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

# 将像素值缩放到 0 到 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建 CNN 模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 将数据整形成四维张量,以适应模型输入
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))

# 绘制训练过程中的准确率和损失曲线
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.show()

# 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

这段代码会做以下几件事情:

  1. 加载 MNIST 数据集,该数据集包含了手写数字图片和对应的标签。
  2. 构建一个简单的 CNN 模型,用于图像分类。
  3. 编译模型,指定优化器、损失函数和评估指标。
  4. 将数据整形成适合模型输入的形式。
  5. 训练模型,并在训练过程中记录准确率和损失值。
  6. 绘制训练过程中的准确率和损失曲线。
  7. 评估模型在测试集上模型的性能,包括准确率、精确率、召回率等指标。
相关推荐
IT古董38 分钟前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手5 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
我就是全世界6 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield6 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
acstdm13 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
摸爬滚打李上进13 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
lishaoan7713 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归
lishaoan7714 小时前
使用tensorflow的线性回归的例子(九)
tensorflow·线性回归·neo4j
asyxchenchong88814 小时前
ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模
机器学习·语言模型·chatgpt