利用机器学习进行图像分类:以TensorFlow和Keras为例

当使用 TensorFlow 和 Keras 进行图像分类时,常用的方法是使用卷积神经网络(Convolutional Neural Network,CNN)。以下是一个简单的图像分类示例,使用 TensorFlow 和 Keras 来训练一个 CNN 模型对手写数字进行分类。

python 复制代码
# 导入所需的库
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

# 将像素值缩放到 0 到 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建 CNN 模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 将数据整形成四维张量,以适应模型输入
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))

# 绘制训练过程中的准确率和损失曲线
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.show()

# 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

这段代码会做以下几件事情:

  1. 加载 MNIST 数据集,该数据集包含了手写数字图片和对应的标签。
  2. 构建一个简单的 CNN 模型,用于图像分类。
  3. 编译模型,指定优化器、损失函数和评估指标。
  4. 将数据整形成适合模型输入的形式。
  5. 训练模型,并在训练过程中记录准确率和损失值。
  6. 绘制训练过程中的准确率和损失曲线。
  7. 评估模型在测试集上模型的性能,包括准确率、精确率、召回率等指标。
相关推荐
周杰伦_Jay1 小时前
【PaddleOCR深度解析与DeepSeek-OCR对比】开源OCR工具库的技术路线与场景适配
人工智能·机器学习·云原生·架构·开源·ocr
Cathy Bryant1 小时前
线性代数直觉(二):二次型与“正定”
笔记·神经网络·考研·机器学习·数学建模
OG one.Z1 小时前
07_朴素贝叶斯
人工智能·机器学习
东皇太星2 小时前
机器学习概念,算法原理及应用
算法·机器学习·梯度下降法
大象耶3 小时前
Mamba与UNet融合的创新架构方向
论文阅读·人工智能·深度学习·计算机网络·机器学习
piggy侠3 小时前
百度PaddleOCR-VL:基于0.9B超紧凑视觉语言模型,支持109种语言,性能超越GPT-4o等大模型
人工智能·算法·机器学习
San304 小时前
使用 n8n 构建自动化科技新闻速览工作流:从 RSS 到 AI 摘要生成与文件存储
运维·人工智能·机器学习
爱思德学术5 小时前
EI会议:第三届大数据、计算智能与应用国际会议(BDCIA 2025)
大数据·机器学习·数据可视化·计算智能
阿水实证通5 小时前
能源经济选题推荐:可再生能源转型政策如何提高能源韧性?基于双重机器学习的因果推断
人工智能·机器学习·能源