利用机器学习进行图像分类:以TensorFlow和Keras为例

当使用 TensorFlow 和 Keras 进行图像分类时,常用的方法是使用卷积神经网络(Convolutional Neural Network,CNN)。以下是一个简单的图像分类示例,使用 TensorFlow 和 Keras 来训练一个 CNN 模型对手写数字进行分类。

python 复制代码
# 导入所需的库
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

# 将像素值缩放到 0 到 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建 CNN 模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 将数据整形成四维张量,以适应模型输入
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))

# 绘制训练过程中的准确率和损失曲线
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(loc='lower right')
plt.show()

# 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

这段代码会做以下几件事情:

  1. 加载 MNIST 数据集,该数据集包含了手写数字图片和对应的标签。
  2. 构建一个简单的 CNN 模型,用于图像分类。
  3. 编译模型,指定优化器、损失函数和评估指标。
  4. 将数据整形成适合模型输入的形式。
  5. 训练模型,并在训练过程中记录准确率和损失值。
  6. 绘制训练过程中的准确率和损失曲线。
  7. 评估模型在测试集上模型的性能,包括准确率、精确率、召回率等指标。
相关推荐
带娃的IT创业者40 分钟前
《Python实战进阶》No39:模型部署——TensorFlow Serving 与 ONNX
pytorch·python·tensorflow·持续部署
Blossom.1185 小时前
量子计算与经典计算的融合与未来
人工智能·深度学习·机器学习·计算机视觉·量子计算
硅谷秋水5 小时前
MoLe-VLA:通过混合层实现的动态跳层视觉-语言-动作模型实现高效机器人操作
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
小李独爱秋7 小时前
机器学习开发全流程详解:从数据到部署的完整指南
人工智能·机器学习
Dovis(誓平步青云)7 小时前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
ZTLJQ7 小时前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
赵钰老师7 小时前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
nuise_8 小时前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
浊酒南街9 小时前
TensorFlow实现逻辑回归
人工智能·tensorflow·逻辑回归
databook9 小时前
线性模型与多分类问题:简单高效的力量
python·机器学习·scikit-learn