LeetCode //C - 60. Permutation Sequence

60. Permutation Sequence

The set [1, 2, 3, ..., n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the k t h k^{th} kth permutation sequence.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

Example 3:

Input: n = 3, k = 1
Output: ""123"

Constraints:
  • 1 <= n <= 9
  • 1 <= k <= n!

From: LeetCode

Link: 60. Permutation Sequence


Solution:

Ideas:
  1. Factorial Calculation: The function starts by calculating factorials, which helps in determining which block or set of permutations the desired permutation falls into.
  2. Position Calculation: By dividing k by the factorial of n−1, the function determines the index of the number to place in each position of the resultant string.
  3. Update and Shift: After determining the position, the selected number is removed from the available list, effectively reducing the problem size for the next iteration.
  4. Memory Management: The function dynamically allocates memory for the result string and a temporary array to hold available numbers, ensuring to free the temporary memory before returning.
Code:
c 复制代码
// Helper function to calculate factorial
int factorial(int x) {
    int result = 1;
    for (int i = 2; i <= x; i++) {
        result *= i;
    }
    return result;
}

// Function to get the k-th permutation sequence
char* getPermutation(int n, int k) {
    int i, j, f;
    int len = n;
    k--; // Convert k to zero-indexed for easier calculations

    // Allocate memory for the result
    char *result = malloc((n + 1) * sizeof(char));
    result[n] = '\0'; // Null terminate the string

    // Create an array to hold numbers 1, 2, 3, ..., n
    int *numbers = malloc(n * sizeof(int));
    for (i = 0; i < n; i++) {
        numbers[i] = i + 1;
    }

    for (i = 0; i < len; i++) {
        f = factorial(n - 1);
        j = k / f; // Determine the index of the current digit
        result[i] = numbers[j] + '0'; // Set the current position in result
        k %= f; // Reduce k

        // Remove used number from the array by shifting elements
        for (int m = j; m < n - 1; m++) {
            numbers[m] = numbers[m + 1];
        }
        n--;
    }

    // Clean up and return result
    free(numbers);
    return result;
}
相关推荐
mNinGInG7 分钟前
c++练习
开发语言·c++·算法
纪元A梦33 分钟前
分布式锁算法——基于ZooKeeper的分布式锁全面解析
java·分布式·算法·zookeeper
Panesle1 小时前
广告推荐算法:COSMO算法与A9算法的对比
人工智能·算法·机器学习·推荐算法·广告推荐
月亮被咬碎成星星1 小时前
LeetCode[15]三数之和
数据结构·算法·leetcode
JCBP_1 小时前
数据结构3
服务器·c语言·数据结构·vscode
飞川撸码2 小时前
【LeetCode 热题100】240:搜索二维矩阵 II(详细解析)(Go语言版)
leetcode·矩阵·golang
半盏茶香2 小时前
启幕数据结构算法雅航新章,穿梭C++梦幻领域的探索之旅——堆的应用之堆排、Top-K问题
java·开发语言·数据结构·c++·python·算法·链表
小竹子142 小时前
L1-1 天梯赛座位分配
数据结构·c++·算法
董董灿是个攻城狮2 小时前
Transformer 通关秘籍8:词向量如何表示近义词?
算法
独好紫罗兰2 小时前
洛谷题单2-P5712 【深基3.例4】Apples-python-流程图重构
开发语言·python·算法