LeetCode //C - 60. Permutation Sequence

60. Permutation Sequence

The set [1, 2, 3, ..., n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the k t h k^{th} kth permutation sequence.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

Example 3:

Input: n = 3, k = 1
Output: ""123"

Constraints:
  • 1 <= n <= 9
  • 1 <= k <= n!

From: LeetCode

Link: 60. Permutation Sequence


Solution:

Ideas:
  1. Factorial Calculation: The function starts by calculating factorials, which helps in determining which block or set of permutations the desired permutation falls into.
  2. Position Calculation: By dividing k by the factorial of n−1, the function determines the index of the number to place in each position of the resultant string.
  3. Update and Shift: After determining the position, the selected number is removed from the available list, effectively reducing the problem size for the next iteration.
  4. Memory Management: The function dynamically allocates memory for the result string and a temporary array to hold available numbers, ensuring to free the temporary memory before returning.
Code:
c 复制代码
// Helper function to calculate factorial
int factorial(int x) {
    int result = 1;
    for (int i = 2; i <= x; i++) {
        result *= i;
    }
    return result;
}

// Function to get the k-th permutation sequence
char* getPermutation(int n, int k) {
    int i, j, f;
    int len = n;
    k--; // Convert k to zero-indexed for easier calculations

    // Allocate memory for the result
    char *result = malloc((n + 1) * sizeof(char));
    result[n] = '\0'; // Null terminate the string

    // Create an array to hold numbers 1, 2, 3, ..., n
    int *numbers = malloc(n * sizeof(int));
    for (i = 0; i < n; i++) {
        numbers[i] = i + 1;
    }

    for (i = 0; i < len; i++) {
        f = factorial(n - 1);
        j = k / f; // Determine the index of the current digit
        result[i] = numbers[j] + '0'; // Set the current position in result
        k %= f; // Reduce k

        // Remove used number from the array by shifting elements
        for (int m = j; m < n - 1; m++) {
            numbers[m] = numbers[m + 1];
        }
        n--;
    }

    // Clean up and return result
    free(numbers);
    return result;
}
相关推荐
2601_9491465314 小时前
C语言语音通知API示例代码:基于标准C的语音接口开发与底层调用实践
c语言·开发语言
学嵌入式的小杨同学15 小时前
从零打造 Linux 终端 MP3 播放器!用 C 语言实现音乐自由
linux·c语言·开发语言·前端·vscode·ci/cd·vim
wfeqhfxz258878215 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
Aaron158816 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
爱编码的小八嘎16 小时前
C语言对话-21.模板特化,缺省参数和其他一些有趣的事情
c语言
_不会dp不改名_17 小时前
leetcode_3010 将数组分成最小总代价的子数组 I
算法·leetcode·职场和发展
yueyuexiaokeai118 小时前
linux kernel常用函数整理
linux·c语言
你撅嘴真丑19 小时前
字符环 与 变换的矩阵
算法
想放学的刺客19 小时前
单片机嵌入式试题(第29期)嵌入式系统的电源完整性设计与去耦电容选型。抗干扰设计与EMC合规性
c语言·stm32·嵌入式硬件·物联网·51单片机
早点睡觉好了19 小时前
重排序 (Re-ranking) 算法详解
算法·ai·rag