Halcon 深度学习缺陷检测

文章目录

深度学习标注

>

获取图片路径

c 复制代码
C:\Users\Administrator\AppData\Roaming\MVTec\HALCON-23.11-Progress\examples\images

必须要有Good或者是OK文件夹做标注,剩下两个为逻辑异常和结构异常
点击检查选择good可以获取所有good图像的照片

点击创建应用和拆分

训练

点击训练
> 点击创建训练点击保存更改

设置完成后点击开始训练

点击评估

通过阈值可以调整判定的区间
滑动热图可以看出误判结果

导出训练文件

推理


已经用 DLT做好标注,训练,和评估,只需修改推理代码

推理代码示例

c 复制代码
* 获取文件图像路径包含合格和不合格图像
list_files ('C:/Users/Administrator/AppData/Roaming/MVTec/HALCON-23.11-Progress/examples/images/juice_bottle/logical_anomaly', ['files','follow_links'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)

* 读取模型
read_dl_model (TrainedModel, DLModelHandle)
* 设置硬件
 query_available_dl_devices (['runtime', 'runtime', 'id'], ['gpu', 'cpu', 0], DLDeviceHandles)
 set_dl_model_param (DLModelHandle, 'device', DLDeviceHandles[0])

* 创建预处理参数
create_dl_preprocess_param_from_model (DLModelHandle, 'none', 'full_domain', [], [], [], DLPreprocessParam)
* 获取模型参数
get_dl_model_param(DLModelHandle,'meta_data',MetaData)
* 异常值分类阈值
ClassificationThreshold := number(MetaData.anomaly_classification_threshold)
SegmentationThreshold := number(MetaData.anomaly_segmentation_threshold)
* 
* Create a dictionary with dataset parameters used for display.
DLDatasetInfo := dict{class_names: ['ok', 'nok'], class_ids: [0, 1]}
* 
* Apply the model to test images.
WindowDict := dict{}
for IndexInference := 0 to |ImageFiles| - 1 by 1
    * 
    read_image (Image, ImageFiles[IndexInference])
    gen_dl_samples_from_images (Image, DLSample)
    * 获取预处理参数
    preprocess_dl_samples (DLSample, DLPreprocessParam)
    * 分类检测
    apply_dl_model (DLModelHandle, DLSample, [], DLResult)
    * 
    *阈值处理
    threshold_dl_anomaly_results (SegmentationThreshold, ClassificationThreshold, DLResult)
    * 显示结果
    dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result', 'anomaly_image'], [], WindowDict)
    dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
    stop ()
endfor
dev_close_window_dict (WindowDict)
return ()
相关推荐
学术头条7 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典8 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui12 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力16 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司1 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_2 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141653 小时前
Ascend C的编程模型
人工智能