LabelImg下载及目标检测数据标注

为什么这一部分内容这么少会单独拎出来呢,因为后期会接着介绍YOLOv8中的其他任务,会使用其他软件进行标注,所以就单独区分开来每一个任务的标注方式了。

这一部分就介绍目标检测任务的标注,数据集是我从COCO2017Val中抽出来两类:person和surfboard,共140张,需要的可以自取:链接, 提取码:b9hs.

还有LabelImg压缩包链接:链接 提取码:isst.

1.LabelImg下载

软件下载链接:GitHub - HumanSignal/labelImg: LabelImg is now part of the Label Studio community. The popular image annotation tool created by Tzutalin is no longer actively being developed, but you can check out Label Studio, the open source data labeling tool for images, text, hypertext, audio, video and time-series data.https://github.com/HumanSignal/labelImg

将LabelImg下载下来之后,直接解压,然后按照github上的说明进行安装。如图所示,Window系统下需要额外下载pyqt5、lxml这两个库,然后进入到解压文件夹编译后就可以使用了,在执行下面指令之前,可以新建一个环境专门用来保存标注的环境:

完整指令为:

python 复制代码
conda create -n labelImg python=3.8 -y
conda activate labelImg
cd E:\edgeDownLoad\labelImg-master

conda install pyqt=5
conda install -c anaconda lxml
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py

在标注之前,我习惯把预设的标签改过来,文件在data/predefined_classes.txt路径下,改成自己要标注的类别,比如我的数据集中有两个类:分别为person和surfboard,按照顺序写进去就行。然后就可以开始伟大而艰巨的标注工作了。

2.目标检测数据标注

标注没有什么特别需要注意的地方,注意保存为YOLO格式数据就行。

我这里准备的是coco2017Val里面同时包含person和surfboard这两类的图片,筛选出来后一共有140张图片,当成本次的训练集和验证集,大海还是很漂亮的,如果需要这个数据集,可以在文章开头自取。

相关推荐
Microvision维视智造23 分钟前
解析大尺寸液晶屏视觉检测,装配错位如何避免?
人工智能·计算机视觉·视觉检测
lilye6640 分钟前
精益数据分析(11/126):辨别虚荣指标,挖掘数据真价值
大数据·人工智能·数据分析
微学AI40 分钟前
详细介绍:MCP(大模型上下文协议)的架构与组件,以及MCP的开发实践
前端·人工智能·深度学习·架构·llm·mcp
豆包MarsCode1 小时前
玩转MCP | 一文看懂如何在 Trae IDE 中解锁 MCP
人工智能·mcp·trae
我不是小upper2 小时前
详解机器学习各算法的优缺点!!
人工智能·算法·机器学习
小君2 小时前
New 版本Trea 对比 Cursor 选择你的下一代 AI 编程伙伴
前端·人工智能·trae
研一计算机小白一枚2 小时前
第一章:自然语言处理
人工智能·自然语言处理
ayiya_Oese2 小时前
[预备知识]1. 线性代数基础
深度学习·计算机视觉·cnn
小爷毛毛_卓寿杰2 小时前
【Dify(v1.2) 核心源码深入解析】Apps 模块
人工智能·后端
Se7en2582 小时前
使用 LangChain + Higress + Elasticsearch 构建 RAG 应用
人工智能