LabelImg下载及目标检测数据标注

为什么这一部分内容这么少会单独拎出来呢,因为后期会接着介绍YOLOv8中的其他任务,会使用其他软件进行标注,所以就单独区分开来每一个任务的标注方式了。

这一部分就介绍目标检测任务的标注,数据集是我从COCO2017Val中抽出来两类:person和surfboard,共140张,需要的可以自取:链接, 提取码:b9hs.

还有LabelImg压缩包链接:链接 提取码:isst.

1.LabelImg下载

软件下载链接:GitHub - HumanSignal/labelImg: LabelImg is now part of the Label Studio community. The popular image annotation tool created by Tzutalin is no longer actively being developed, but you can check out Label Studio, the open source data labeling tool for images, text, hypertext, audio, video and time-series data.https://github.com/HumanSignal/labelImg

将LabelImg下载下来之后,直接解压,然后按照github上的说明进行安装。如图所示,Window系统下需要额外下载pyqt5、lxml这两个库,然后进入到解压文件夹编译后就可以使用了,在执行下面指令之前,可以新建一个环境专门用来保存标注的环境:

完整指令为:

python 复制代码
conda create -n labelImg python=3.8 -y
conda activate labelImg
cd E:\edgeDownLoad\labelImg-master

conda install pyqt=5
conda install -c anaconda lxml
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py

在标注之前,我习惯把预设的标签改过来,文件在data/predefined_classes.txt路径下,改成自己要标注的类别,比如我的数据集中有两个类:分别为person和surfboard,按照顺序写进去就行。然后就可以开始伟大而艰巨的标注工作了。

2.目标检测数据标注

标注没有什么特别需要注意的地方,注意保存为YOLO格式数据就行。

我这里准备的是coco2017Val里面同时包含person和surfboard这两类的图片,筛选出来后一共有140张图片,当成本次的训练集和验证集,大海还是很漂亮的,如果需要这个数据集,可以在文章开头自取。

相关推荐
有Li29 分钟前
基于深度学习的微出血自动检测及解剖尺度定位|文献速递-视觉大模型医疗图像应用
人工智能·深度学习
熙曦Sakura34 分钟前
【深度学习】微积分
人工智能·深度学习
qq_2546744137 分钟前
如何用概率论解决真实问题?用随机变量去建模,最大的难题是相关关系
人工智能·神经网络
汤姆和佩琦44 分钟前
2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
人工智能·python·学习·机器学习·scikit-learn·sklearn
远洋录1 小时前
AI Agent的记忆系统实现:从短期对话到长期知识
人工智能·ai·ai agent
HyperAI超神经1 小时前
【TVM教程】为 ARM CPU 自动调优卷积网络
arm开发·人工智能·python·深度学习·机器学习·tvm·编译器
Kai HVZ1 小时前
《OpenCV》——图像透视转换
人工智能·opencv·计算机视觉
IT古董1 小时前
【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
人工智能·深度学习·cnn
Luzem03191 小时前
使用scikit-learn中的KNN包实现对鸢尾花数据集的预测
人工智能·深度学习·机器学习
AI趋势预见2 小时前
使用AI生成金融时间序列数据:解决股市场的数据稀缺问题并提升信噪比
人工智能·深度学习·神经网络·语言模型·金融