【matlab基础知识代码】(十八)无约束最优化问题

min下面的x称为优化向量或者是决策变量

匿名函数法

>> f=@(x)(x(1)^2-2*x(1))*exp(-x(1)^2-x(2)^2-x(1)*x(2)); x0=[0; 0]; [x,b,c,d]=fminsearch(f,x0),

x =

0.6111

-0.3056

b =

-0.6414

c =

1

d =

包含以下字段的 struct:

iterations: 72

funcCount: 137

algorithm: 'Nelder-Mead simplex direct search'

message: '优化已终止:↵ 当前的 x 满足使用 1.000000e-04 的 OPTIONS.TolX 的终止条件,↵F(X) 满足使用 1.000000e-04 的 OPTIONS.TolFun 的收敛条件↵'

使用函数fminunc():

>> [x,b,c,d]=fminunc(f,[0;.0])

Local minimum found.

Optimization completed because the size of the gradient is less than

the value of the optimality tolerance.

<stopping criteria details>

x =

0.6110

-0.3055

b =

-0.6414

c =

1

d =

包含以下字段的 struct:

iterations: 7

funcCount: 27

stepsize: 1.8220e-04

lssteplength: 1

firstorderopt: 1.8030e-06

algorithm: 'quasi-newton'

message: '↵Local minimum found.↵↵Optimization completed because the size of the gradient is less than↵the value of the optimality tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The first-order optimality measure, 6.010135e-07, is less ↵than options.OptimalityTolerance = 1.000000e-06.↵↵'

绘制三维等高线 ,获得并叠印中间结果

Matlab 复制代码
>>  [x,y]=meshgrid(-3:.1:3, -2:.1:2); z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); contour(x,y,z,30);
 ff=optimset; 
ff.OutputFcn=@myout; x0=[2 1]; 
x=fminunc(f,x0,ff)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

<stopping criteria details>

x =

    0.6110   -0.3055

最优化求解函数的另一种调用方法

建立最优化问题的"结构体"模型

Matlab 复制代码
>>  problem.solver='fminunc'; problem.options=optimset; problem.objective=@(x)(x(1)^2-2*x(1))*exp(-x(1)^2-x(2)^2-x(1)*x(2)); problem.x0=[2; 1]; [x,b,c,d]=fminunc(problem)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

<stopping criteria details>

x =

    0.6110
   -0.3055


b =

   -0.6414


c =

     1


d = 

  包含以下字段的 struct:

       iterations: 7
        funcCount: 66
         stepsize: 1.7059e-04
     lssteplength: 1
    firstorderopt: 7.4506e-09
        algorithm: 'quasi-newton'
          message: '↵Local minimum found.↵↵Optimization completed because the size of the gradient is less than↵the value of the optimality tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The first-order optimality measure, 7.437017e-09, is less ↵than options.OptimalityTolerance = 1.000000e-06.↵↵'
相关推荐
JJJJ_iii1 分钟前
【深度学习03】神经网络基本骨架、卷积、池化、非线性激活、线性层、搭建网络
网络·人工智能·pytorch·笔记·python·深度学习·神经网络
sensen_kiss4 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.1 导论与Hebb学习规则
人工智能·神经网络·学习
红衣小蛇妖4 分钟前
LeetCode-704-二分查找
java·算法·leetcode·职场和发展
mwq301238 分钟前
GPT系列模型演进:从GPT-1到GPT-4o的技术突破与差异解析
人工智能
rongqing20199 分钟前
问题记录:一个简单的字符串正则匹配算法引发的 CPU 告警
算法
JJJJ_iii10 分钟前
【深度学习05】PyTorch:完整的模型训练套路
人工智能·pytorch·python·深度学习
mwq3012323 分钟前
AI的“物理学”:揭秘GPT-3背后改变一切的“缩放定律”
人工智能
无限进步_26 分钟前
C语言字符串与内存操作函数完全指南
c语言·c++·算法
DP+GISer31 分钟前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类
victory043134 分钟前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类