了解并实现一个Transformer Block

文章目录

  • [1. 前言](#1. 前言)
  • [2. Transformer Block](#2. Transformer Block)
  • [3. 代码实现](#3. 代码实现)
  • [4. 参考](#4. 参考)

1. 前言

什么是 Transformer?如果希望深入理解可以参考:
《NLP深入学习:大模型背后的Transformer模型究竟是什么?(一)》
《NLP深入学习:大模型背后的Transformer模型究竟是什么?(二)》

本文主要介绍常常听到的 Transformer Block 的概念,以及如何实现一个 Transformer Block。

2. Transformer Block

回顾一下 Transformer 的完整模型:

我们常说的 Transformer Block 对应图中解码器的上部分。为了具体展示流程,我们假设有一句话:"Every effort moves you" 作为输入,经过蓝色框中的 Transformer Block 之后输出,如下图:

图中蓝色的部分就是所谓的 Transformer Block。

3. 代码实现

BERT 源码已经实现了 Transformer 的细节,完整源码参考 Pytorch Bert,这里把 Transformer Block 实现的框架贴出来

python 复制代码
import torch.nn as nn

from .attention import MultiHeadedAttention
from .utils import SublayerConnection, PositionwiseFeedForward


class TransformerBlock(nn.Module):
    """
    Bidirectional Encoder = Transformer (self-attention)
    Transformer = MultiHead_Attention + Feed_Forward with sublayer connection
    """

    def __init__(self, hidden, attn_heads, feed_forward_hidden, dropout):
        """
        :param hidden: hidden size of transformer
        :param attn_heads: head sizes of multi-head attention
        :param feed_forward_hidden: feed_forward_hidden, usually 4*hidden_size
        :param dropout: dropout rate
        """

        super().__init__()
        self.attention = MultiHeadedAttention(h=attn_heads, d_model=hidden)
        self.feed_forward = PositionwiseFeedForward(d_model=hidden, d_ff=feed_forward_hidden, dropout=dropout)
        self.input_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.output_sublayer = SublayerConnection(size=hidden, dropout=dropout)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x, mask):
        x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask))
        x = self.output_sublayer(x, self.feed_forward)
        return self.dropout(x)

4. 参考

《NLP深入学习:大模型背后的Transformer模型究竟是什么?(一)》
《NLP深入学习:大模型背后的Transformer模型究竟是什么?(二)》

欢迎关注本人,我是喜欢搞事的程序猿; 一起进步,一起学习;

欢迎关注知乎/CSDN:SmallerFL;

也欢迎关注我的wx公众号(精选高质量文章):一个比特定乾坤

相关推荐
minstbe2 分钟前
AI开发:用 AI 从 0 到 1 做出能变现的小应用:以 MergePDF-Pro 为例的完整实战
人工智能
专注数据的痴汉3 分钟前
「数据获取」中国会计年鉴(1996-2024)
大数据·人工智能·信息可视化
小真zzz3 分钟前
ChatPPT免费功能之【导出PDF】:PPT内容安全+便捷分享
人工智能·ai·pdf·powerpoint·ppt·aippt
谢的2元王国5 分钟前
小数据量样本 2500条之下 且每条文本长度不超过35个字的时候 多词汇平均向量外加word2vec的语义模型处理后再到特征向量中检索即可
人工智能·自然语言处理·word2vec
sali-tec6 分钟前
C# 基于OpenCv的视觉工作流-章8-形态学
人工智能·深度学习·opencv·算法·计算机视觉
IT_陈寒7 分钟前
2024年JavaScript开发者必备的10个ES13新特性实战指南
前端·人工智能·后端
智慧化智能化数字化方案8 分钟前
【精品资料鉴赏】详解企业研发生产一体化总体规划建设方案
大数据·人工智能·企业研发生产一体化·企业如何开展数字化转型·企业数字化营销·数字化转型咨询规划·数字化转型架构
IT·小灰灰10 分钟前
DMXAPI驱动的小说生成系统:从集成到优化的完整实践
人工智能·aigc
Cx330❀12 分钟前
脉脉平台深度测评:【AI创作者xAMA】从职场社交到AI创作赋能
数据库·人工智能·脉脉
执笔论英雄12 分钟前
【RL】importance_sampling Ratio的计算
人工智能