CNN实现fashion_mnist数据集分类(tensorflow)

1、查看tensorflow版本

python 复制代码
import tensorflow as tf

print('Tensorflow Version:{}'.format(tf.__version__))
print(tf.config.list_physical_devices())

2、加载fashion_mnist数据与预处理

python 复制代码
import numpy as np
(train_images,train_labels),(test_images,test_labels) = tf.keras.datasets.fashion_mnist.load_data()
# print(train_images.shape) # (60000, 28, 28)
# print(train_labels.shape) # (60000,)
# print(test_images.shape) # (10000, 28, 28)
# print(test_labels.shape) # (10000,)
train_images = np.expand_dims(train_images, -1)
# print(train_images.shape) # (个数, hight, width,channels)=(60000, 28, 28, 1)

3、CNN模型构建

python 复制代码
from keras.layers import Input,Dense,Dropout
from keras.layers import Conv2D,MaxPool2D,GlobalAvgPool2D

model = tf.keras.Sequential()
model.add(Input(shape=(28,28,1)))  # train_images.shape[1:]
model.add(Conv2D(filters=64,kernel_size=(3,3),activation='relu',padding='same')) # 增加filter个数,增加模型拟合能力
model.add(Conv2D(filters=64,kernel_size=(3,3),activation='relu',padding='same'))
model.add(MaxPool2D())  # 默认2*2. 池化层扩大视野
model.add(Dropout(0.2)) # 防止过拟合
model.add(Conv2D(filters=128,kernel_size=(3,3),activation='relu',padding='same'))
model.add(Conv2D(filters=128,kernel_size=(3,3),activation='relu',padding='same'))
model.add(MaxPool2D())  # 默认2*2
model.add(Dropout(0.2)) # 防止过拟合
model.add(Conv2D(filters=256,kernel_size=(3,3),activation='relu'))
model.add(GlobalAvgPool2D()) # 全局平均池化
model.add(Dense(10,activation='softmax'))
model.summary()

4、模型配置与训练

python 复制代码
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['acc'])
              
H = model.fit(x=train_images,
              y=train_labels,
              validation_split=0.2,
              # validation_data=(X_test,y_test),
              epochs=10,
              batch_size=64,
              verbose=1)

5、损失函数和准确率分析

根据损失函数和准确率,判断模型是否过拟合或者欠拟合,不断调整网络结构,使得模型最优。

python 复制代码
import matplotlib.pyplot as plt
fig = plt.gcf()
fig.set_size_inches(12,4)
plt.subplot(1,2,1)
plt.plot(H.epoch, H.history['loss'], label='loss')
plt.plot(H.epoch, H.history['val_loss'], label='val_loss')
plt.legend()
plt.title('loss')

plt.subplot(1,2,2)
plt.plot(H.epoch, H.history['acc'], label='acc')
plt.plot(H.epoch, H.history['val_acc'], label='val_acc')
plt.legend()
plt.title('acc')
相关推荐
光羽隹衡7 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
Katecat9966310 小时前
肾衰竭医学影像多类别目标检测:基于Mask R-CNN的囊肿、肾脏、结石和肿瘤六类病变特征识别_1
目标检测·r语言·cnn
一行注释也不写13 小时前
【卷积层和池化层在CNN中的作用】
深度学习·计算机视觉·cnn
2501_9421917714 小时前
使用Faster R-CNN实现网球球检测:基于R50-FPN-MS-3x模型的COCO数据集训练与优化
目标跟踪·r语言·cnn
wfeqhfxz258878215 小时前
基于YOLO12-A2C2f-DFFN-DYT-Mona的铁件部件状态识别与分类系统_1
人工智能·分类·数据挖掘
2501_9415079415 小时前
脊柱结构异常检测与分类:基于Cascade-RCNN和HRNetV2p-W32模型的改进方案
人工智能·分类·数据挖掘
2501_9418372616 小时前
基于YOLOv8的19种鱼类目标检测与分类系统——鱼类市场物种识别研究
yolo·目标检测·分类
不如语冰17 小时前
AI大模型入门1.1-python基础-数据结构
数据结构·人工智能·pytorch·python·cnn
2501_9413297219 小时前
长豆荚目标检测:Faster R-CNN改进模型实战与优化
目标检测·r语言·cnn
python机器学习ML19 小时前
机器学习——16种模型(基础+集成学习)+多角度SHAP高级可视化+Streamlit交互式应用+RFE特征选择+Optuna+完整项目
人工智能·python·机器学习·分类·数据挖掘·scikit-learn·集成学习