【RAG 论文】IRCoT:基于 CoT 的交叉检索解决多步骤问题

论文:Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions

⭐⭐⭐⭐

ACL 2023, arXiv:2212.10509

Code: github.com/stonybrooknlp/ircot

论文速读

大多数 RAG 都是一次检索来辅助 LLM 生成,但是面对多步骤推理问题,往往需要多次检索多次推理才能解决。

本文提出了 IRCoT:交叉进行 CoT 指导 retrieval 和使用 retrieval result 提升 CoT。也就是说,retrieval 和 reason 两个步骤必须相互通知。下图给了一个例子:

对于如上的问题, "In what country was Lost Gravity manufactured?" 单独问 LLM 或者单独在维基百科上搜索, 都很难得到答案. 但是通过如下步骤或许可以得到最终的答案:

  1. 首先将该问题在维基百科上搜索, 得到关于 《Lost Gravity》 的一些信息.
  2. LLM 能够从该信息中抓取到 《Lost Gravity》 的制作公司为 Mack Rides.
  3. 接着在维基百科中搜索 "The Lost Gradvity was manufactured by Mack Rides", 我们会得到一些关于 Mack Rides 的信息.
  4. 基于该信息我们能够得到 (通过 LLM 抓取) "Mack Rides" 是一家德国公司的信息.
  5. 最终我们能够得到答案为: Germany.

上面的例子就是告诉我们,很多问题是需要检索 + 提取信息交替进行最后才能得到答案的。

整体思路如下图:

首先使用 question 从 Wikipedia 中检索出 K 个文档,之后交叉重复如下两个步骤,直到终止:

  1. reason-step:把 "question"、"目前为止收集到的所有 retrieved paragraphs"、"LLM 生成的所有 CoT 句子" 填充入下面的 prompt template,并输送给 LLM,让他做 generation,保留其生成的第一个句子作为本轮生成的 CoT sentence:
  1. retrieve-step:使用上一个 reason-step 得到的 CoT sentence,去 Wikipedia 检索出 K 个 paragraphs,将其加入到 retrieved paragraphs 中

重复交叉进行以上两个步骤,直到生成的 CoT sentence 中包含有 "answer is" 或者迭代轮数超过了 threshold。

实验与分析

该论文提出的 IRCoT:

  • 在多个 dataset 上均超过了 one-step retrieval 的模型
  • 在 OOD setting 中表现不错
  • 显著减少了 CoT 的事实错误
  • 对于较小 size 的 LLM 仍然有用
  • few-shot multi-step ODQA 的 SOTA 模型
相关推荐
浔川python社1 小时前
【维护期间重要提醒】请勿使用浔川 AI 翻译 v6.0 翻译违规内容
人工智能
CS创新实验室2 小时前
AI 与编程
人工智能·编程·编程语言
min1811234562 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
_codemonster2 小时前
高斯卷积的可加性定理
人工智能·计算机视觉
数据智研3 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
likuolei3 小时前
Spring AI框架完整指南
人工智能·python·spring
梵得儿SHI3 小时前
(第四篇)Spring AI 核心技术攻坚:多轮对话与记忆机制,打造有上下文的 AI
java·人工智能·spring·springai生态·上下文丢失问题·三类记忆·智能客服实战案
二哈喇子!3 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
lingzhilab3 小时前
零知ESP32-S3 部署AI小智 2.1,继电器和音量控制以及页面展示音量
人工智能
两万五千个小时3 小时前
AI Agent 框架演进
人工智能