【RAG 论文】IRCoT:基于 CoT 的交叉检索解决多步骤问题

论文:Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions

⭐⭐⭐⭐

ACL 2023, arXiv:2212.10509

Code: github.com/stonybrooknlp/ircot

论文速读

大多数 RAG 都是一次检索来辅助 LLM 生成,但是面对多步骤推理问题,往往需要多次检索多次推理才能解决。

本文提出了 IRCoT:交叉进行 CoT 指导 retrieval 和使用 retrieval result 提升 CoT。也就是说,retrieval 和 reason 两个步骤必须相互通知。下图给了一个例子:

对于如上的问题, "In what country was Lost Gravity manufactured?" 单独问 LLM 或者单独在维基百科上搜索, 都很难得到答案. 但是通过如下步骤或许可以得到最终的答案:

  1. 首先将该问题在维基百科上搜索, 得到关于 《Lost Gravity》 的一些信息.
  2. LLM 能够从该信息中抓取到 《Lost Gravity》 的制作公司为 Mack Rides.
  3. 接着在维基百科中搜索 "The Lost Gradvity was manufactured by Mack Rides", 我们会得到一些关于 Mack Rides 的信息.
  4. 基于该信息我们能够得到 (通过 LLM 抓取) "Mack Rides" 是一家德国公司的信息.
  5. 最终我们能够得到答案为: Germany.

上面的例子就是告诉我们,很多问题是需要检索 + 提取信息交替进行最后才能得到答案的。

整体思路如下图:

首先使用 question 从 Wikipedia 中检索出 K 个文档,之后交叉重复如下两个步骤,直到终止:

  1. reason-step:把 "question"、"目前为止收集到的所有 retrieved paragraphs"、"LLM 生成的所有 CoT 句子" 填充入下面的 prompt template,并输送给 LLM,让他做 generation,保留其生成的第一个句子作为本轮生成的 CoT sentence:
  1. retrieve-step:使用上一个 reason-step 得到的 CoT sentence,去 Wikipedia 检索出 K 个 paragraphs,将其加入到 retrieved paragraphs 中

重复交叉进行以上两个步骤,直到生成的 CoT sentence 中包含有 "answer is" 或者迭代轮数超过了 threshold。

实验与分析

该论文提出的 IRCoT:

  • 在多个 dataset 上均超过了 one-step retrieval 的模型
  • 在 OOD setting 中表现不错
  • 显著减少了 CoT 的事实错误
  • 对于较小 size 的 LLM 仍然有用
  • few-shot multi-step ODQA 的 SOTA 模型
相关推荐
聚客AI1 天前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar1 天前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生1 天前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队1 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁1 天前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊1 天前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元1 天前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒1 天前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生1 天前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报1 天前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc