【RAG 论文】IRCoT:基于 CoT 的交叉检索解决多步骤问题

论文:Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions

⭐⭐⭐⭐

ACL 2023, arXiv:2212.10509

Code: github.com/stonybrooknlp/ircot

论文速读

大多数 RAG 都是一次检索来辅助 LLM 生成,但是面对多步骤推理问题,往往需要多次检索多次推理才能解决。

本文提出了 IRCoT:交叉进行 CoT 指导 retrieval 和使用 retrieval result 提升 CoT。也就是说,retrieval 和 reason 两个步骤必须相互通知。下图给了一个例子:

对于如上的问题, "In what country was Lost Gravity manufactured?" 单独问 LLM 或者单独在维基百科上搜索, 都很难得到答案. 但是通过如下步骤或许可以得到最终的答案:

  1. 首先将该问题在维基百科上搜索, 得到关于 《Lost Gravity》 的一些信息.
  2. LLM 能够从该信息中抓取到 《Lost Gravity》 的制作公司为 Mack Rides.
  3. 接着在维基百科中搜索 "The Lost Gradvity was manufactured by Mack Rides", 我们会得到一些关于 Mack Rides 的信息.
  4. 基于该信息我们能够得到 (通过 LLM 抓取) "Mack Rides" 是一家德国公司的信息.
  5. 最终我们能够得到答案为: Germany.

上面的例子就是告诉我们,很多问题是需要检索 + 提取信息交替进行最后才能得到答案的。

整体思路如下图:

首先使用 question 从 Wikipedia 中检索出 K 个文档,之后交叉重复如下两个步骤,直到终止:

  1. reason-step:把 "question"、"目前为止收集到的所有 retrieved paragraphs"、"LLM 生成的所有 CoT 句子" 填充入下面的 prompt template,并输送给 LLM,让他做 generation,保留其生成的第一个句子作为本轮生成的 CoT sentence:
  1. retrieve-step:使用上一个 reason-step 得到的 CoT sentence,去 Wikipedia 检索出 K 个 paragraphs,将其加入到 retrieved paragraphs 中

重复交叉进行以上两个步骤,直到生成的 CoT sentence 中包含有 "answer is" 或者迭代轮数超过了 threshold。

实验与分析

该论文提出的 IRCoT:

  • 在多个 dataset 上均超过了 one-step retrieval 的模型
  • 在 OOD setting 中表现不错
  • 显著减少了 CoT 的事实错误
  • 对于较小 size 的 LLM 仍然有用
  • few-shot multi-step ODQA 的 SOTA 模型
相关推荐
肥猪猪爸20 分钟前
使用卡尔曼滤波器估计pybullet中的机器人位置
数据结构·人工智能·python·算法·机器人·卡尔曼滤波·pybullet
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。1 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr1 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive1 小时前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦1 小时前
生成式AI对产业的影响与冲击
人工智能·aigc
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好1 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng2 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
嵌入式大圣2 小时前
嵌入式系统与OpenCV
人工智能·opencv·计算机视觉